472
Views
63
CrossRef citations to date
0
Altmetric
Original Articles

Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory

&
Pages 820-829 | Received 12 Dec 2015, Accepted 05 May 2016, Published online: 30 Nov 2016

References

  • F. Ebrahimi and E. Salari, Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment, Acta Astronaut., vol. 113, pp. 29–50, 2015.
  • F. Ebrahimi, M. Ghadiri, E. Salari, S. Hoseini, and G. Shaghaghi, Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams, J. Mech. Sci. Technol., vol. 29, no. 3, pp. 1207–1215, 2015.
  • F. Ebrahimi and E. Salari, Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments, Compos. Struct., vol. 128, pp. 363–380, 2015.
  • R.K. Bhangale and N. Ganesan, Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core, J. Sound Vib., vol. 295, no. 1–2, pp. 294–316, 2006.
  • S. Pradhan and T. Murmu, Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method, J. Sound Vib., vol. 321, no. 1, pp. 342–362, 2009.
  • A. Zenkour and M. Sobhy, Thermal buckling of various types of FGM sandwich plates, Compos. Struct., vol. 93, no. 1, pp. 93–102, 2010.
  • A.M. Zenkour, A comprehensive analysis of functionally graded sandwich plates: Part 2—Buckling and free vibration, Int. J. Solids Struct., vol. 42, no. 18–19, pp. 5243–5258, 2005.
  • O. Rahmani and O. Pedram, Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, Int. J. Eng. Sci., vol. 77, pp. 55–70, 2014.
  • A.K.-T. Lau and D. Hui, The revolutionary creation of new advanced materials—Carbon nanotube composites, Composites Part B, vol. 33, no. 4, pp. 263–277, 2002.
  • K.T. Lau, C. Gu, G.-H. Gao, H.-Y. Ling, and S.R. Reid Stretching process of single-and multi-walled carbon nanotubes for nanocomposite applications, Carbon, vol. 42, no. 2, pp. 426–428, 2004.
  • A.M. Esawi and M.M. Farag, Carbon nanotube reinforced composites: Potential and current challenges, Mater. Des., vol. 28, no. 9, pp. 2394–2401, 2007.
  • P. Bonnet, D. Sireude, B. Garnier, and O. Chauvet, Thermal properties and percolation in carbon nanotube-polymer composites, Appl. Phys. Lett., vol. 91, no. 20, pp. 201910-1–201910-3, 2007.
  • J. Fidelus et al., Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites, Composites Part A, vol. 36, no. 11, pp. 1555–1561, 2005.
  • P. Ajayan et al., Aligned carbon nanotube arrays formed by cutting a polymer resin–nanotube composite, Science, vol. 265, no. 5176, pp. 1212–1214, 1994.
  • G. Odegard et al., Constitutive modeling of nanotube–reinforced polymer composites, Compos. Sci. Technol., vol. 63, no. 11, pp. 1671–1687, 2003.
  • M. Griebel and J. Hamaekers, Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites, Comput. Methods Appl. Mech. Eng., vol. 193, no. 17, pp. 1773–1788, 2004.
  • N. Hu et al., Prediction of elastic properties of carbon nanotube reinforced composites, Proc. R. Soc. London, Ser. A, vol. 461, no. 2058, pp. 1685–1710, 2005.
  • E.T. Thostenson and T.-W. Chou, On the elastic properties of carbon nanotube-based composites: Modelling and characterization, J. Phys. D, vol. 36, no. 5, p. 573, 2003.
  • R. Zhu, E. Pan, and A. Roy, Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites, Mater. Sci. Eng. A, vol. 447, no. 1, pp. 51–57, 2007.
  • B. Ashrafi and P. Hubert, Modeling the elastic properties of carbon nanotube array/polymer composites, Compos. Sci. Technol., vol. 66, no. 3, pp. 387–396, 2006.
  • Y. Xu, G. Ray, and B. Abdel-Magid, Thermal behavior of single-walled carbon nanotube polymer–matrix composites, Composites Part A, vol. 37, no. 1, pp. 114–121, 2006.
  • Y. Han and J. Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Comput. Mater. Sci., vol. 39, no. 2, pp. 315–323, 2007.
  • D. Qian et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett., vol. 76, no. 20, pp. 2868–2870, 2000.
  • G.D. Seidel and D.C. Lagoudas, Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites, Mech. Mater., vol. 38, no. 8, pp. 884–907, 2006.
  • H.-S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., vol. 91, no. 1, pp. 9–19, 2009.
  • L.-L. Ke, J. Yang, and S. Kitipornchai, Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Compos. Struct., vol. 92, no. 3, pp. 676–683, 2010.
  • L.-L. Ke, J. Yang, and S. Kitipornchai, Dynamic stability of functionally graded carbon nanotube-reinforced composite beams, Mech. Adv. Mater. Struct., vol. 20, no. 1, pp. 28–37, 2013.
  • Z.-X. Wang and H.-S. Shen, Nonlinear vibration of nanotube-reinforced composite plates in thermal environments, Comput. Mater. Sci., vol. 50, no. 8, pp. 2319–2330, 2011.
  • Z.-X. Wang and H.-S. Shen, Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets, Composites Part B, vol. 43, no. 2, pp. 411–421, 2012.
  • J. Yang, L.-L. Ke, and C. Feng, Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams, Int. J. Struct. Stab. Dyn., art. ID 1540017, 2015.
  • H. Wu, S. Kitipornchai, and J. Yang, Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, Int. J. Struct. Stab. Dyn., art. ID 1540011, 2015.
  • R. Kadoli, K. Akhtar, and N. Ganesan, Static analysis of functionally graded beams using higher order shear deformation theory, Appl. Math. Modell., vol. 32, no. 12, pp. 2509–2525, 2008.
  • M. Şimşek, Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories, Nucl. Eng. Des., vol. 240, no. 4, pp. 697–705, 2010.
  • A. Mahi et al., An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions, Compos. Struct., vol. 92, no. 8, pp. 1877–1887, 2010.
  • L.O. Larbi, A. Kaci, M.S.A. Houari, and A. Tounsi An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams, Mech. Based Des. Struct. Mach., vol. 41, no. 4, pp. 421–433, 2013.
  • T.P. Vo, H.-T. Thai, T.-K. Nguyen, and F. Inam Static and vibration analysis of functionally graded beams using refined shear deformation theory, Meccanica, vol. 49, no. 1, pp. 155–168, 2014.
  • T.-K. Nguyen, T.T.-P. Nguyen, T. P. Vo, and H.-T. Thai Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory, Composites Part B, vol. 76, pp. 273–285, 2015.
  • T.P. Vo, H.-T. Thai, T.-K. Nguyen, F. Inam, and Jaehong Lee A quasi-3D theory for vibration and buckling of functionally graded sandwich beams, Compos. Struct., vol. 119, p. 1–12, 2015.
  • H.A. Atmane, A. Tounsi, and F. Bernard, Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations, Int. J. Mech. Mater. Des., vol. 11, pp. 1–14, 2015.
  • M.C. Amirani, S. Khalili, and N. Nemati, Free vibration analysis of sandwich beam with FG core using the element free Galerkin method, Compos. Struct., vol. 90, no. 3, pp. 373–379, 2009.
  • T.Q. Bui, A. Khosravifard, C. Zhang, M.R. Hematiyan, and M.V. Golub Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method, Eng. Struct., vol. 47, pp. 90–104, 2013.
  • T.P. Vo, H.T. Thai, T.K. Nguyen, A. Maheri, and J. Lee Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory, Eng. Struct., vol. 64, pp. 12–22, 2014.
  • E. Carrera, S. Brischetto, M. Cinefra, and M. Soave Effects of thickness stretching in functionally graded plates and shells, Composites Part B, vol. 42, no. 2, pp. 123–133, 2011.
  • H.T. Thai, T.P. Vo, T.Q. Bui, and T.K. Nguyen A quasi-3D hyperbolic shear deformation theory for functionally graded plates, Acta Mech., vol. 225, no. 3, pp. 951–964, 2014.
  • J. Mantari and C.G. Soares, Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates, Compos. Struct., vol. 94, no. 8, pp. 2561–2575, 2012.
  • A. Zenkour, Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate, Arch. Appl. Mech., vol. 77, no. 4, pp. 197–214, 2007.
  • E. Carrera, G. Giunta, and M. Petrolo, Beam Structures: Classical and Advanced Theories, John Wiley & Sons, UK, 2011.
  • E. Carrera, M. Filippi, and E. Zappino, Free vibration analysis of laminated beam by polynomial, trigonometric, exponential and zig-zag theories, J. Compos. Mater., art. ID 0021998313497775, 2013.
  • D.S. Mashat, E. Carrera, A.M. Zenkour, S.A. Al Khateeb, and M. Filippi Free vibration of FGM layered beams by various theories and finite elements, Composites Part B, vol. 59, pp. 269–278, 2014.
  • H.-S. Shen and Y. Xiang, Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., vol. 56, pp. 698–708, 2013.
  • H.-S. Shen, Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties, Int. J. Solids Struct., vol. 41, no. 7, pp. 1961–1974, 2004.
  • C.-L. Zhang and H.-S. Shen, Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation, Appl. Phys. Lett., vol. 89, no. 8, art. ID 081904, 2006.
  • A. Mahi and A. Tounsi, A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates, Appl. Math. Modell., vol. 39, no. 9, pp. 24889–2508, 2015.
  • H.-S. Shen and C.-L. Zhang, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Mater. Des., vol. 31, no. 7, pp. 3403–3411, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.