1,385
Views
112
CrossRef citations to date
0
Altmetric
Original Articles

Unified formulation of geometrically nonlinear refined beam theories

ORCID Icon & ORCID Icon
Pages 15-31 | Received 11 Jul 2016, Accepted 31 Aug 2016, Published online: 16 Feb 2017

References

  • A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, UK, 2013.
  • R. Frisch-Fay, Flexible Bars, Butterworths, Washington D.C., 1962.
  • S.P. Timoshenko and J.M. Gere, Theory of Elastic Stability, Tokyo, Japan, 1961.
  • L. Euler, De Curvis Elasticis, Bousquet, Lausanne, and Geneva, Switzerland, 1744.
  • K.E. Bisshopp and D.C. Drucker, Large deflection of cantilever beams, Q. Appl. Math., vol. 3, no. 3, pp. 272–275, 1945.
  • C.Y. Wang, Post-buckling of a clamped-simply supported elastic, Int. J. Non Linear Mech., vol. 32, no. 6, pp. 1115–1122, 1997.
  • H.H. Denman and R. Schmidt, Chebyshev approximation applied to large deflections of elastic, Ind. Math., vol. 18, pp. 63–74, 1968.
  • T.M. Wang, S.L. Lee, and O.C. Zienkiewicz, A numerical analysis of large deflections of beams, Int. J. Mech. Sci., vol. 3, no. 3, pp. 219–228, 1961.
  • Z.P. Bažant and L. Cedolin, Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, World Scientific, Singapore, 2010.
  • J.H. Argyris, P.C. Dunne, G. Malejannakis, and D.W. Scharpf, On large displacement small strain analysis of structures with rotational degrees of freedom, Comput. Methods Appl. Mech. Eng., vol. 15, no. 1, pp. 99–135, 1978.
  • J.H. Argyris, O. Hilpert, G.A. Malejannakis, and D.W. Scharpf, On the geometrical stiffness of a beam in space—A consistent V.W. approach, Comput. Methods Appl. Mech. Eng., vol. 20, no. 1, pp. 105–131, 1979.
  • K.-J. Bathe and S. Bolourchi, Large displacement analysis of three-dimensional beam structures, Int. J. Numer. Methods Eng., vol. 14, no. 7, pp. 961–986, 1979.
  • M.A. Crisfield, A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements, Comput. Methods Appl. Mech. Eng., vol. 81, no. 2, pp. 131–150, 1990.
  • E. Reissner, On finite deformations of space-curved beams, ZAMP, vol. 32, no. 6, pp. 734–744, 1981.
  • J.C. Simo and L. Vu-Quoc, A three-dimensional finite-strain rod model. Part II: Computational aspects, Comput. Methods Appl. Mech. Eng., vol. 58, no. 1, pp. 79–116, 1986.
  • J.C. Simo and L. Vu-Quoc, A geometrically-exact rod model incorporating shear and torsion-warping deformation, Int. J. Solids Struct., vol. 27, no. 3, pp. 371–393, 1991.
  • A. Cardona and M. Géradin, A beam finite element non-linear theory with finite rotations, Int. J. Numer. Methods Eng., vol. 26, no. 11, pp. 2403–2438, 1988.
  • A. Ibrahimbegović, F. Frey, and I. Kožar, Computational aspects of vector-like parametrization of three-dimensional finite rotations, Int. J. Numer. Methods Eng., vol. 38, no. 21, pp. 3653–3673, 1995.
  • Y.-B. Yang, J.-D. Yau, and L.-J. Leu, Recent developments in geometrically nonlinear and postbuckling analysis of framed structures, Appl. Mech. Rev., vol. 56, no. 4, pp. 431–449, 2003.
  • J.-X. Gu and S.-L. Chan, A refined finite element formulation for flexural and torsional buckling of beam–columns with finite rotations, Eng. Struct., vol. 27, no. 5, pp. 749–759, 2005.
  • S.P. Timoshenko, On the transverse vibrations of bars of uniform cross section, Philos. Mag., vol. 43, pp. 125–131, 1922.
  • E. Reissner, On one-dimensional large-displacement finite-strain beam theory, Stud. Appl. Math., vol. 52, no. 2, pp. 87–95, 1973.
  • E. Reissner, Some considerations on the problem of torsion and flexure of prismatical beams, Int. J. Solids Struct., vol. 15, no. 1, pp. 41–53, 1979.
  • E. Reissner, Further considerations on the problem of torsion and flexure of prismatical beams, Int. J. Solids Struct., vol. 19, no. 5, pp. 385–392, 1983.
  • P.F. Pai and A.N. Palazotto, Large-deformation analysis of flexible beams, Int. J. Solids Struct., vol. 33, no. 9, pp. 1335–1353, 1996.
  • A. Mohyeddin and A. Fereidoon, An analytical solution for the large deflection problem of Timoshenko beams under three-point bending, Int. J. Mech. Sci., vol. 78, pp. 135–139, 2014.
  • F. Gruttmann, R. Sauer, and W. Wagner, A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections, Comput. Methods Appl. Mech. Eng., vol. 160, no. 3, pp. 383–400, 1998.
  • W. Yu, V.V. Volovoi, D.H. Hodges, and X. Hong, Validation of the variational asymptotic beam sectional analysis (VABS), AIAA J., vol. 40, pp. 2105–2113, 2002.
  • W. Yu, D.H. Hodges, V.V. Volovoi, and E.D. Fuchs, A generalized Vlasov theory for composite beams, Thin Walled Struct., vol. 43, no. 9, pp. 1493–1511, 2005.
  • E. Carrera, A. Pagani, M. Petrolo, and E. Zappino, Recent developments on refined theories for beams with applications, Mech. Eng. Rev., vol. 2, no. 2, pp. 1–30, 2015.
  • V.Z. Vlasov, Thin-Walled Elastic Beams, National Science Foundation, Washington, D.C., 1961.
  • F. Bleich, Buckling Strength of Metal Structures, McGraw-Hill, 1952.
  • N.W. Murray, Introduction to the Theory of Thin-Walled Structures, Oxford University Press, New York, 1984.
  • A. Genoese, A. Genoese, A. Bilotta, and G. Garcea, A geometrically exact beam model with non-uniform warping coherently derived from the Saint Venant rod, Eng. Struct., vol. 68, pp. 33–46, 2014.
  • C. Basaglia, D. Camotim, and N. Silvestre, Post-buckling analysis of thin-walled steel frames using generalised beam theory (GBT), Thin Walled Struct., vol. 62, pp. 229–242, 2013.
  • S.P. Machado, Non-linear buckling and postbuckling behavior of thin-walled beams considering shear deformation, Int. J. Non Linear Mech., vol. 43, no. 5, pp. 345–365, 2008.
  • F. Mohri, A. Eddinari, N. Damil, and M.P. Ferry, A beam finite element for non-linear analyses of thin-walled elements, Thin Walled Struct., vol. 46, no. 7, pp. 981–990, 2008.
  • F. Mohri, S.A. Meftah, and N. Damil, A large torsion beam finite element model for tapered thin-walled open cross sections beams, Eng. Struct., vol. 99, pp. 132–148, 2015.
  • E.J. Sapountzakis and V.J. Tsipiras, Non-linear elastic non-uniform torsion of bars of arbitrary cross-section by BEM, Int. J. Non Linear Mech., vol. 45, no. 1, pp. 63–74, 2010.
  • E.J. Sapountzakis and J.A. Dourakopoulos, Flexural-torsional postbuckling analysis of beams of arbitrary cross section, Acta Mech., vol. 209, no. 1–2, pp. 67–84, 2010.
  • R.F. Vieira, F.B.E. Virtuoso, and E.B.R. Pereira, A higher order beam model for thin-walled structures with in-plane rigid cross-sections, Eng. Struct., vol. 84, pp. 1–18, 2015.
  • D. Magisano, L. Leonetti, and G. Garcea, Advantages of the mixed format in geometrically nonlinear analysis of beams and shells using solid finite elements, Int. J. Num. Methods Eng., vol. 109, no. 9, pp. 1237–1262, 2017.
  • E. Carrera, G. Giunta, and M. Petrolo, Beam Structures: Classical and Advanced Theories, John Wiley & Sons, Chichester, UK, 2011.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, Chichester, UK, 2014.
  • E. Carrera, A. Pagani, and M. Petrolo, Classical, refined and component-wise theories for static analysis of reinforced-shell wing structures, AIAA J., vol. 51, no. 5, pp. 1255–1268, 2013.
  • E. Carrera and A. Pagani, Accurate response of wing structures to free vibration, load factors and non-structural masses, AIAA J., vol. 54, no. 1, pp. 227–241, 2016.
  • E. Carrera, A. Pagani, and M. Petrolo, Refined 1D finite elements for the analysis of secondary, primary, and complete civil engineering structures, J. Struct. Eng., vol. 141, art. 04014123, 2015.
  • E. Carrera and A. Pagani, Free vibration analysis of civil engineering structures by component-wise models, J. Sound Vib., vol. 333, no. 19, pp. 4597–4620, 2014.
  • E. Carrera, M. Filippi, P.K.R. Mahato, and A. Pagani, Advanced models for free vibration analysis of laminated beams with compact and thin-walled open/closed sections, J. Compos. Mater., vol. 49, no. 17, pp. 2085–2101, 2014.
  • E. Carrera and M. Petrolo, Refined one-dimensional formulations for laminated structure analysis, AIAA J., vol. 50, no. 1, pp. 176–189, 2012.
  • K.J. Bathe, Finite Element Procedure, Prentice Hall, Upper Saddle River, NJ, 1996.
  • E. Carrera and M. Petrolo, Refined beam elements with only displacement variables and plate/shell capabilities, Meccanica, vol. 47, no. 3, pp. 537–556, 2012.
  • K. Washizu, Variational Methods in Elasticity and Plasticity, Pergamon, Oxford, UK, 1968.
  • J.N. Reddy, An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, fluid Mechanics, and Solid Mechanics, Oxford University Press, Oxford, UK, 2014.
  • E. Carrera, A study on arc-length-type methods and their operation failures illustrated by a simple model, Comput. Struct., vol. 50, no. 2, pp. 217–229, 1994.
  • M.A. Crisfield, Non-Linear Finite Element Analysis of Solid and Structures, John Wiley & Sons, Chichester, England, 1991.
  • M.A. Crisfield, A fast incremental/iterative solution procedure that handles “snap through”, Comput. Struct., vol. 13, no. 1, pp. 55–62, 1981.
  • M.A. Crisfield, An arc-length method including line searches and accelerations, Int. J. Numer. Methods Eng., vol. 19, no. 9, pp. 1269–1289, 1983.
  • J.-L. Batoz and G. Dhatt, Incremental displacement algorithms for nonlinear problems, Int. J. Numer. Methods Eng., vol. 14, no. 8, pp. 1262–1267, 1979.
  • K.H. Schweizerhof and P. Wriggers, Consistent linearization for path following methods in nonlinear FE analysis, Comput. Methods Appl. Mech. Eng., vol. 59, no. 3, pp. 261–279, 1986.
  • P. Wriggers and J.C. Simo, A general procedure for the direct computation of turning and bifurcation points, Int. J. Numer. Methods Eng., vol. 30, no. 1, pp. 155–176, 1990.
  • E. Onãte, On the derivation and possibilities of the secant stiffness matrix for non linear finite element analysis, Comput. Mech., vol. 15, no. 6, pp. 572–593, 1995.
  • O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method for Solid and Structural Mechanics, 6th Edition, Butterworth-Heinemann, Washington, D.C., 2005.
  • S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, 1970.
  • E. Carrera, Sull’uso dell’operatore secante in analisi non lineare di strutture multistrato con il metodo degli elementi finiti. Proceedings of XI Congresso Nazionale AIMETA, 28 September–2 October, Trento, Italy, 1992.
  • R.D. Wood and B. Schrefler, Geometrically non-linear analysis—A correlation of finite element notations, Int. J. Numer. Methods Eng., vol. 12, no. 4, pp. 635–642, 1978.
  • C. Felippa and L.A. Crivelli, The core-congruential formulation of geometrically nonlinear finite elements. In: Non Linear Computational Mechanics: The State of the Art, P. Wriggers and W. Wagner, Eds., Springer, Berlin, 1991.
  • M. Badawi and A.R. Cusens, Symmetry of the stiffness matrices for geometrically non-linear analysis, Commun. Appl. Numer. Methods, vol. 8, no. 2, pp. 135–140, 1992.
  • A. Morán, E. Onãte, and J. Miquel, A general procedure for deriving symmetric expressions for the secant and tangent stiffness matrices in finite element analysis, Int. J. Numer. Methods Eng., vol. 42, no. 2, pp. 219–236, 1998.
  • S. Rajasekaran and D.W. Murray, Incremental finite element matrices, J. Struct. Div., vol. 99, no. 12, pp. 2423–2438, 1973.
  • R.H. Mallett and P.V. Marcal, Finite element analysis of nonlinear structures, J. Struct. Div., vol. 94, no. 9, pp. 2081–2105, 1968.
  • E. Carrera, Comportamento Postcritico di Gusci Multistrato, Ph.D. Thesis, Department of Aerospace Engineering, Politecnico di Torino, Torino, Italy, 1991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.