215
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

An efficient numerical method for analyzing the thermal effects on the vibration of embedded single-walled carbon nanotubes based on the nonlocal shell model

, &
Pages 500-511 | Received 30 Jul 2016, Accepted 04 Dec 2016, Published online: 03 Apr 2017

References

  • S. Iijima, Helical microtubules of graphitic carbon, Nature, vol. 354, pp. 56–58, 1991.
  • B.I. Yakobson and P. Avouris, Mechanical properties of carbon nanotubes, Carbon Nanotub.: Top. Appl. Phys., vol. 80, pp. 287–327, 2001.
  • Y.H. Ho, C.P. Chang, F.L. Shyu, R.B. Chen, S.C. Chen, and M.F. Lin, Electronic and optical properties of double-walled armchair carbon nanotubes, Carbon, vol. 42, pp. 3159–3167, 2004.
  • M.A. Lopez Manchado, L. Valentini, J. Biagiotti, and J.M. Kenny, Thermal and mechanical properties of carbon nanotubes-polypropylene composites prepared by melt processing, Carbon, vol. 43, pp. 1499–1505,2005.
  • J. Sumfleth, K. Prehn, M.H.G. Wichmann, S. Wedekind, and K. Schulte, A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD-and Arc-Grown multi-wall carbon nanotubes, Compos. Sci. Technol., vol. 70, pp. 173–180, 2010.
  • H.W.Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Carbon nanotube single-electron transistors at room temperature, Science, vol. 293, pp. 76–79, 2001.
  • D.M. Guldi, G.M.A. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion, Angew. Chem., vol. 117, pp. 2051–2054, 2005.
  • J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, and P.L. McEuen, Electromechanical resonators from graphene sheets, Science, vol. 315, pp. 490–493, 2007.
  • H.Y. Chiu, P. Hung, H.W.Ch. Postma, and M. Bockrath, Atomic-scale mass sensing using carbon nanotube resonators, Nano Lett., vol. 8, pp. 4342–4346, 2008.
  • M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks Jr., S. Washburn, and R. Superfine, Bending and buckling of carbon nanotubes under large strain, Nature, vol. 389, pp. 582–584, 1997.
  • S. Akita, M. Nishio, and Y. Nakayama, Buckling of multiwall carbon nanotubes under axial compression, Jpn. J. Appl. Phys., vol. 45, pp. 5586–5589, 2006.
  • Y.R. Jeng, P.C. Tsai, and T.H. Fang, Experimental and numerical investigation into buckling instability of carbon nanotube probes under nanoindentation, Appl. Phys. Lett., vol. 90, p. 161913, 2007.
  • S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantas, and D.S. Galvão, Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators, Phys. Rev. Lett., vol. 90, p. 055504, 2003.
  • L.F. Fang and H.Y. Hu, Thermal vibration of double-walled carbon nanotubes predicted via double-Euler-beam model and molecular dynamics, Acta Mech., vol. 223, pp. 2117–2115, 2012.
  • M. Li, Z. Kang, P. Yang, X. Meng, and Y. Lu, Molecular dynamics study on buckling of single-wall carbon nanotube-based intramolecular junctions and influence factors, Comput. Mater. Sci., vol. 67, pp. 390–396, 2013.
  • W.H. Duan, Q. Wang, and K.M. Liew, Modeling the instability of carbon nanotubes: From continuum mechanics to molecular dynamics, J. Nanotechnol. Eng. Med., vol. 1, pp. 011001–011001, 2010.
  • W.B. Lu, J. Wu, X. Feng, K.C. Hwang, and Y. Huang, Buckling analyses of double-wall carbon nanotubes: A shell theory based on the interatomic potential, ASME J. Appl. Mech., vol. 77, p. 061016, 2010.
  • C.M. Wang, V.B.C. Tan, and Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, J. Sound Vib., vol. 294, pp. 1060–1072, 2006.
  • X.Y. Wang, X. Wang, and X. Chen, Thermal buckling of multi-walled carbon nanotubes based on a rigorous van der Waals interaction, J. Therm. Stresses, vol. 30, pp. 343–355, 2007.
  • P. Sharma, S. Ganti, and N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett., vol. 82, p. 535, 2003.
  • B. Akgoz and O. Civalek, Kling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, J. Comput. Theor. Nanosci., vol. 8, pp. 1821–1827, 2011.
  • M.M. Seyyed Fakhrabai, A. Rastgoo, and M.T. Ahmadian, Investigation of the mechanical behaviors of carbon nanotubes under electrostatic actuation using the modified couple stress theory, Fuller., Nanotub. Carbon Nanostruct., vol. 21, pp. 930–945, 2013.
  • S. Narendar and S. Gopalakrishnan, Nonlocal scale effects on wave propagation in multi-walled carbon Nanotubes, Comput. Mater. Sci., vol. 47, pp. 526–538, 2009.
  • L. Wang, Vibration analysis of nanotubes conveying fluid based on gradient elasticity theory, J. Vib. Control, vol. 18, pp. 313–320, 2012.
  • A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54, pp. 4703–4710, 1983.
  • A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2002.
  • J. Peddieson, G.R. Buchanan, and R.P. McNitt, Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci., vol. 41, pp. 305–312, 2003.
  • Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, and B.I. Yakobson, Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes, J. Mech. Phys. Solids, vol. 56, pp. 3475–3485, 2008.
  • R. Ansari, H. Rouhi, and S. Sahmani, Free vibration analysis of single- and double-walled carbon nanotubes based on nonlocal elastic shell models, J. Vib. Control, vol. 20, pp. 670–678, 2014.
  • B.L. Wang and K.F. Wang, Vibration analysis of embedded nanotubes using nonlocal continuum theory, Compos. Part B: Eng., vol. 47, pp. 96–101, 2013.
  • M. Aydogdu and M. Arda, Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity, Int. J. Mech. Mater. Design, vol. 12, pp. 1–14, 2014.
  • A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., vol. 10, pp. 1–16, 1972.
  • L. Wang, Q. Ni, M. Li, and Q. Qian, The thermal effect on vibration and instability of carbon nanotubes conveying fluid, Phys. E: Low-dimens. Syst. Nanostruct., vol. 40, pp. 3179–3182, 2008.
  • H. Heireche, A. Tounsi, A. Benzair, M. Maachou, and E.A. Adda Bedia, Sound wave propagation is single-walled carbon nanotubes using nonlocal elasticity, Phys. E, vol. 40, pp. 2791–2799, 2008.
  • L. Ke, Y. Xiang, J. Yang, and S. Kitipornchai, Nonlinearfree vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory, Comput. Mater. Sci., vol. 47, pp. 676–683, 2009.
  • T. Murrmu and S.C. Pradhan, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Comput. Mater. Sci., vol. 46, pp. 854–859, 2009.
  • R. Ansari, R. Gholami, and M.A. Darabi, Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory, J. Therm. Stress., vol. 34, pp. 1271–1281, 2011.
  • C. Li, Torsional vibration of carbon nanotubes: Comparison of two nonlocal models and a semi-continuum model, Int. J. Mech. Sci., vol. 82, pp. 25–31, 2014.
  • R. Ansari, S. Sahmani, and H. Rouhi, Rayleigh–Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions, Phys. Lett. A, vol. 375, pp. 1255–1263, 2011.
  • H. Baghdadi, A. Tounsi, M. Zidour, and A. Benzair, Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory, Fuller., Nanotub. Carbon Nanostruct., vol. 23, pp. 266–272, 2015.
  • H.S. Shen and C.L. Zhang, Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model, Compos. Struct., vol. 92, pp. 1073–1084, 2010.
  • M. Asghari and J. Rafati, Variational principles for the stability analysis of multi-walled carbon nanotubes based on a nonlocal elastic shell model, ASME Proceedings Micro and Nanotechnology, pp. 591–598, 2010.
  • Y. Yan, W.Q. Wang, and L.X. Zhang, Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field, Appl. Math. Model., vol. 34, pp. 3422–3429, 2010.
  • R. Ansari, A. Shahabodini, H. Rouhi, and A. Alipour, thermal buckling analysis of multi-walled carbon nanotubes through a Nonlocal shell theory incorporating interatomic Potentials, J. Therm. Stress., vol. 36, pp. 56–70, 2013.
  • E. Ghavanloo, F. Daneshmand, and M. Rafiei, Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation, Phys. E: Low-Dimens. Syst. Nanostruct., vol. 42, pp. 2218–2224, 2010.
  • B. Amirian, R. Hosseini-Ara, and H. Moosavi, Thermo-mechanical vibration of short carbon nanotubes embedded in pasternak foundation based on nonlocal elasticity theory, Shock Vib., vol. 20, pp. 821–832, 2013.
  • R. Ansari and H. Ramezannezhad, Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects, Phys. E: Low-Dimens. Syst. Nanostruct., vol. 43, pp. 1171–1178, 2011.
  • Y. Gafour, M. Zidour, A. Tounsi, H. Heireche, and A. Semmah, Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory, Phys. E: Low-Dimens. Syst. Nanostruct., vol. 48, pp. 118–123, 2013.
  • R. Li and G.A. Kardomateas, Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity, J. Appl. Mech., vol. 74, pp. 399–405, 2007.
  • R. Ansari and H. Rouhi, Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory, J. Eng. Mater. Technol., vol. 134, p. 011008, 2012.
  • Q. Deng and Z. Yang, Vibration of fluid-filled multi-walled carbon nanotubes seen via nonlocal elasticity theory, Acta Mech. Solida Sin., vol. 27, pp. 568–578, 2014.
  • R. Ansari and A. Arjangpay, Nanoscale vibration and buckling of single-walled carbon nanotubes using the meshless local Petrov–Galerkin method, Phys. E: Low-Dimens. Sys. Nanostruct., vol. 63, pp. 283–292, 2014.
  • R. Ansari, M. Faghih Shojaei, H. Rouhi, and M. Hossienzadeh, A novel variational numerical method for analyzing the free vibration of composite conical shells, Appl. Math. Model., vol. 39, pp. 2849–2860, 2015. doi: 10.1016/j.apm.2014.11.012.
  • R. Ansari, V. Mohammadi, M. Faghih Shojaei, R. Gholami, and H. Rouhi, Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory, Eur. J. Mech. A/Solids, vol. 45, pp. 143–152, 2014.
  • E. Bagherizadeh, Y. Kiani, and M.R. Eslami, Thermal buckling of functionally graded material cylindrical shells on elastic foundation, AIAA J., vol. 50, pp. 500–503, 2012.
  • C. Shu, Differential Quadrature and its Application in Engineering, Springer, London,2000.
  • F. Tornabene, E. Viola, and D.J. Inman, 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures, J. Sound Vib., vol. 328, pp. 259–290, 2009.
  • Y.Q. Zhang, X. Liu, and G.R. Liu, Thermal effect on transverse vibrations of double-walled carbon nanotubes, Nanotechnology, vol. 18, p. 445701, 2007.
  • H.S. Shen, Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elastic medium, Compos. Struct., vol. 94, pp. 1144–1154, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.