227
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Vibration analysis of parabolic shear-deformable piezoelectrically actuated nanoscale beams incorporating thermal effects

ORCID Icon &
Pages 917-929 | Received 15 Feb 2016, Accepted 25 Mar 2017, Published online: 07 Jul 2017

References

  • R. Ansari, T. Pourashraf, and R. Gholami, An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory, Thin-Walled Struct., vol. 93, pp. 169–176, 2015.
  • M. Aydogdu, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Phys. E: Low-dimensional Syst. Nanostruct., vol. 41, no. 9, pp. 1651–1655, 2009.
  • M. R. Barati and H. Shahverdi, An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position, Mech. of Adv. Mater. and Struct., vol. 24, no. 10, pp. 840–853, 2017.
  • M. R. Barati, A. M. Zenkour and H. Shahverdi, Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory, Compos. Struct., vol. 141, pp. 203–212, 2016.
  • M. Dehrouyeh-Semnani and M. Nikkhah-Bahrami, The influence of size-dependent shear deformation on mechanical behavior of microstructures-dependent beam based on modified couple stress theory, Compos. Struct., vol. 123, pp. 325–336, 2015.
  • A. Doroushi, M. R. Eslami, and A. Komeili, Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory, J. Intell. Mater. Syst. Struct., vol. 22, pp. 231–243, 2011.
  • F. Ebrahimi, M. Ghadiri, E. Salari, S. A. H. Hoseini, and G. R. Shaghaghi, Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams, J. Mech. Sci. Technol., vol. 29, no. 3, pp. 1207–1215, 2015.
  • F. Ebrahimi and E. Salari, Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method, Compos. Part B, Eng., vol. 79, pp. 156–169, 2015b.
  • F. Ebrahimi and E. Salari, A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position, CMES: Comput. Model. Eng. Sci., vol. 105, no. 2, pp. 151–181, 2015.
  • F. Ebrahimi and M. R. Barati, A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams, Arabian J. Sci. Eng., vol. 41, no. 5, pp. 1679–1690, 2016a.
  • F. Ebrahimi and M. R. Barati, Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams, Mech. Adv. Mater. Struct., vol. 24, no. 11, pp. 924–936, 2016b.
  • M. A. Eltaher, A. Emam, and F. F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams, Appl. Math. Comput., vol. 218, no. 14, pp. 7406–7420, 2012.
  • M. A. Eltaher, A. E. Alshorbagy, and F. F. Mahmoud, Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams, Compos. Struct., vol. 99, pp. 193–201, 2013a.
  • M. A. Eltaher, A. Samir, A. Emam, and F. F. Mahmoud, Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct., vol. 96, pp. 82–88, 2013b.
  • C. Eringen and D. G. B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972a.
  • C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., vol. 10, no. 1, pp. 1–16, 1972.
  • C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983.
  • S. Hosseini-Hashemi, I. Nahas, M. Fakher, and R. Nazemnezhad, Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity, Acta Mechanica, vol. 225, no. 6, pp. 1555–1564, 2014.
  • L. L. Ke, Y. S. Wang, and Z. D. Wang, Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory, Compos. Struct., vol. 94, no. 6, pp. 2038–2047, 2012a.
  • L. L. Ke, Y. S. Wang, and Z. D. Wang, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory, Smart Mater. Struct., vol. 21, no. 2, pp. 025018, 2012b.
  • Y. Kiani, M. Rezaei, S. Taheri, and M. R. Eslami, Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams, Int. J. Mech. Mater. Des., vol. 7, no. 3, pp. 185–197, 2011.
  • M. Komijani, Y. Kiani, S. E. Esfahani, and M. R. Eslami, Vibration of thermo-electrically post-buckled rectangular functionally graded piezoelectric beams, Compos. Struct., vol. 98, pp. 143–152, 2013.
  • M. Lezgy-Nazargah, P. Vidal, and O. Polit, An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams, Compos. Struct., vol. 104, pp. 71–84, 2013.
  • Y. S. Li, W. J. Feng, and Z. Y. Cai, Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory, Compos. Struct., vol. 115, pp. 41–50, 2014.
  • R. Nazemnezhad and S. Hosseini-Hashemi, Nonlocal nonlinear free vibration of functionally graded nanobeams, Compos. Struct., vol. 110, pp. 192–199, 2014.
  • O. Rahmani and O. Pedram, Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, Int. J. Eng. Sci., vol. 77, pp. 55–70, 2014.
  • O. Rahmani and A. A. Jandaghian, Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory, Appl. Phys. A, vol. 119, no. 3, pp. 1019–1032, 2015.
  • J. N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., vol. 45, no. 2, pp. 288–307, 2007.
  • P. A. Sharabiani and M. R. H. Yazdi, Nonlinear free vibrations of functionally graded nanobeams with surface effects, Compos. Part B, Eng., vol. 45, no. 1, pp. 581–586, 2013.
  • N. L. Shegokar and A. Lal, Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded materials beam subjected to thermo-piezoelectric loadings with material uncertainties, Meccanica, vol. 49, no. 5, pp. 1039–1068, 2014.
  • Z. F. Shi and Y. Chen, Functionally graded piezoelectric cantilever beam under load, Arch. Appl. Mech., vol. 74, pp. 237–247, 2004.
  • M. Şimşek and H. H. Yurtcu, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory, Compos. Struct., vol. 97, pp. 378–386, 2013.
  • K. P. Soldatos, A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mechanica, vol. 94, no. 3–4, pp. 195–220, 1992.
  • M. Touratier, An efficient standard plate theory, Int. J. Eng. Sci., vol. 29, no. 8, pp. 901–916, 1991.
  • B. Uymaz, Forced vibration analysis of functionally graded beams using nonlocal elasticity, Compos. Struct., vol. 105, pp. 227–239, 2013.
  • J. Yang and H. J. Xiang, Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators, Smart Mater. Struct., vol. 16, no. 3, p. 784, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.