361
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Hyperelastic analysis based on a polygonal finite element method

, &
Pages 930-942 | Received 09 May 2016, Accepted 25 Mar 2017, Published online: 26 Jul 2017

References

  • A. Constantinu, P. Steinmann, T. Bobach, G. Farin, and G. Umlauf, The adaptive Delaunay tessellation: A neighborhood covering meshing technique., Comput. Mech., vol. 42, no. 5, pp. 655–669, 2008.
  • C.R. Dohrmann, S.W. Key, and M.W. Heinstein, A method for connecting dissimilar finite element meshes in two dimensions., Interna. J. Num. Methods Eng., vol. 48, no. 5, pp. 655–678, 2000.
  • K.Y. Sze and N. Sheng, Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics, Fini. Elem. Analy. Des., vol. 42, no. 2, pp. 107–129, 2005.
  • Y.A. Kuznetsov, Mixed finite element method for diffusion equations on polygonal meshes with mixed cells, J. Num. Math., vol. 14, no. 4, pp. 305–315, 2006.
  • M.M. Rashid and P.M. Gullett, On a finite element method with variable element topology, Comp. Methods Appl. Mech. Eng., vol. 190, pp. 1509–1527, 2000.
  • K.Y. Dai, G.R. Liu, and T.T. Nguyen, An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics., Fini. Elem. Analy. Des., vol. 43, no. (11-12), pp. 847–860, 2007.
  • C. Talischi, G.H. Paulino, A. Pereira, and I.F.M. Menezes, Polygonal finite element for topology optimization: A unifying paradigm, Interna. J. Num. Methods Eng., vol. 82, no. 6, pp. 671–698, 2007.
  • I. Chiong and C. Song, Development of polygonal elements based on the scaled boundary finite element, WCCM/APCOM2001: Material Science and Engineering, vol. 10, pp. doi: 10.1088/1757–899X/10/1/012226,2010
  • X.H. Tang, S.C. Wu, C. Zheng, and J.H. Zhang, A novel virtual node method for polygonal elements, Appl. Math. Mech. -Engl. Ed., vol. 30, no. 10, pp. 1233–1246, 2009.
  • F.B. Barros, S.D. Barcellos, and C.A. Durate, p adaptive ck generalized finite element for arbitrary polygonal clouds, J. Num. Math., vol. 41, pp. 175–187, 2007.
  • B. Lin and S.N. Chandlerwilde, Numerical conformal mapping and mesh generation for polygonal and multiply connected regions, J. Hydro Inform., vol. 2, no. 4, pp. 255–266, 2000.
  • S. Natarajan, S. Bordas, and D.R. Mahapathra, Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping, Interna. J. Num. Methods Eng., vol. 80, no. 1, pp. 103–134, 2009.
  • S. Natarajan, S. Bordas, and D.R. Mahapathra, Integrating strong and weak discontinuities without integration sub cells and example applications in XFEM/GFEM framework, Interna. J. Num. Methods Eng., vol. 83, no. 3, pp. 269–294, 2010.
  • C.J. Li, P. Lamberti, and C. Dagnino, Numerical integration over polygons using an eight-node quadrilateral spline finite element, J. Comput. Appl. Math., vol. 233, pp. 279–292, 2009.
  • S.E. Mousavi, H. Xiao, and N. Sukumar, Generalized Gaussian quadrature rules on arbitrary polygons, Interna. J. Num. Methods Eng., vol. 82, no. 1, pp. 99–113, 2009.
  • N. Sukumar, G. Manzini, and A. Russo, Hourglass stabilization and the virtual element method, Interna. J. Num. Methods Eng., vol. 1, pp. 1–33, 2000.
  • H. Chi, C. Talischi, L.P. Oscar, and G.H. Paulino, Polygonal finite elements for finite elasticity, Interna. J. Num. Methods Eng., vol. 101, pp. 305–328, 2015.
  • G. Manzini, A. Russo, and N. Sukumar, New perspectives on polygonal and polyhedral finite element methods, Math. Models Methods Appl. Sci., vol. 24, no. 8, pp. 1665–1699, 2014.
  • G. Manzini, A. Russo, and N. Sukumar, Gradient bounds for, Wachspress coordinates on polytopes, SIAM J. Num. Analy., vol. 52, no. 1, pp. 515–532, 2014.
  • C. Talischi, A. Pereira, G.H. Paulino, I.F.M. Menezes, and M.S. Carvalho, Polygonal finite elements for incompressible fluid flow, Interna. J. Num. Methods Fluids, vol. 74, no. 2, pp. 134–151, 2014.
  • C. Talischi, G. Paulino, A. Pereira, and I. Menezes, Polygonal finite elements for topology optimization: A unifying paradigm, Interna. J. Num. Methods Eng., vol. 82, pp. 671–698, 2010.
  • L.G. Arun, C. Talischi, and G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comp. Methods Appl. Mech. Eng., vol. 282, pp. 132–160, 2014.
  • S.O.R. Biabanaki and A.R. Khoei, A polygonal finite element method for modeling arbitrary interfaces in large deformation problems, Comput. Mech., vol. 50, pp. 19–33, 2012.
  • S.O.R. Biabanaki, A.R. Khoei, and P. Wriggers, Polygonal finite element methods for contact-impact problems on non-conformal meshes, Comp. Methods Appl. Mech. Eng., vol. 269, pp. 198–221, 2014.
  • N. Sukumar, Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons, Comput. Methods Appl. Mech. Eng., vol. 263, pp. 27–41, 2013.
  • T. Nguyen Thoi, H. Nguyen Xuan, P. Phung Van, T. Rabczuk, and C. Le Van, Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM), Interna. J. Comput. Methods, vol. 10, no. 1, pp. 1–19, 2013.
  • K. Hornmann and N. Sukumar, Maximum entropy coordinates for arbitrary polytopes, Eurograp. Symp. Geom. Proce. 2008, vol. 27, no. 5, pp. 1–12, 2009.
  • C. David and H.K. Nancy, Generation of polyhedral Delaunay meshes, Procedia Eng., vol. 82, pp. 291–300, 2014.
  • P. Yijiang, Z. Lijuan, P. Jiwei, and G. Qing, A two-dimensional base force element method using concave polygonal mesh, Eng. Analy. Bound. Elem., vol. 42, pp. 45–50, 2014.
  • M. Kraus and P. Steinmann, Finite element formulations for 3D convex polyhedra in nonlinear continuum mechanics, Comp. Assi. Methods Eng. Sci., vol. 19, pp. 121–134, 2012.
  • S. Gosh and S. Moorthy, Elastic plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method, Comp. Methods Appl. Mech. Eng., 121(1-4), pp. 373–409, 1995.
  • H.W. Zhang, H. Wang, B.S. Chen, and Z.Q. Xie, Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle, Comp. Methods Appl. Mech. Eng., 197(6–8), pp. 741–755, 2008.
  • S. Natarajan, E.T. Ooi, I. Chiong, and C. Song, Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation, Fini. Elem. Analy. Des., vol. 85, pp. 101–122, 2014.
  • A.R. Andrew Gillette and C. Bajaj, Error estimates for generalized barycentric interpolation, Adv. Comput. Math., vol. 37, no. 3, pp. 417–439, 2012.
  • W. Chunmei and W. Junping, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comp. Math. Applica., vol. 68, no. 12, pp. 2314–2330, 2014.
  • S. Rjasanow and S. Weiber, Higher order BEM-based FEM on polygonal meshes, Soc. Indust. Appl. Math., vol. 50, no. 5, pp. 2357–2378, 2012.
  • F.J. Sayas, The validity of Johnson Nedelec’s BEM-FEM coupling on polygonal interfaces, Soc. Indust. Appl. Math., vol. 55, no. 1, pp. 131–146, 2013.
  • E.L. Wachspress, A Rational Finite Element Basis, Academic press, New york, 1975.
  • J. Warren, S. Shaefer, A.N. Hirani, and M. Desbrun, Barycentric coordinates for convex sets, Adv. Comput. Math., vol. 27, pp. 319–338, 2007.
  • M. Floater, Mean value coordinates, Comp. Aided Geom. Des., vol. 20, pp. 19–27, 2003.
  • E.A. Malsch, J.J. Lin, and G. Dasgupta, Smooth two dimensional interpolations : A recipe for all polygons, J. Graph. GPU Game Tools, vol. 10, no. 2, pp. 27–39, 2005.
  • M.A. Taylor, Assymetric cubature formulas for polynomial integration in the triangle and square, J. Comput. Appl. Math., vol. 218, pp. 184–191, 2008.
  • S. Wandzura and H. Xiao, Symmetric quadrature rules on a triangle, Comp. Math. Applica., vol. 45, pp. 1829–1840, 2003.
  • J. Schewchuk, What is a good linear element? Interpolation, conditioning, and quality measures, Eleventh International Meshing Roundtable (Ithaca, New York), Sandia National Laboratories, pp. 115–126, 2002.
  • N. Calvo, S.R. Idhelson, and E. Onate, The extended Delaunay tessellation, Eng. Comput., 20(5/6), pp. 583–600, 2003.
  • T. Bobach, A. Constantiniu, P. Steinmann, and G. Umlauf, Geometric properties of the adaptive Delaunay tessellation, Lect. Notes Comput. Sci., vol. 5862, pp. 41–54, 2010.
  • J.R. Shewchuk, General dimensional constrained Delaunay and constrained regular triangulations i : Combinatorial properties, Disc. Comput. Geom., 39(1–3), pp. 580–637, 2008.
  • Y.J. Yang, H. Zhang, J.H. Yong, W. Zeng, J. Paul, and J. Sun, Constrained Delaunay triangulation using Delaunay visibility, Lect. Notes Comp. Sci., vol. 4291, pp. 682–691, 2006.
  • L.P. Chew, Constrained Delaunay triangulations, Algorthimica, vol. 4, no. 1, pp. 97–108, 1989.
  • B. Zalik and I. Kolingerova, An incremental construction algorithm for Delaunay triangulation using nearest-point paradigm, Int. J. of Geograph. Inform. Sci., vol. 17, no. 2, pp. 119–138, 2003.
  • F.L. De and E. Puppo, An online algorithm for constrained Delaunay triangulation., CVGIP, Graph. Models Image Proce., vol. 54, no. 3, pp. 290–300, 1992.
  • E.A. Malsch and G. Dasgupta, Shape functions for polygonal domains with interior nodes, Interna. J. Num. Methods Eng., vol. 61, pp. 1153–1172, 2004.
  • E.A. Malsch and G. Dasgupta, Interpolation constraints and thermal distributions: a method for all non-concave polygons, Interna. J. Solids Struct., vol. 41, no. 8, pp. 2165–2188, 2004.
  • N. Sukumar and E.A. Malsch, Recent advances in construction of polygonal finite element interpolants, Arch. Comput. Methods Eng., vol. 13, no. 1, pp. 129–163, 2006.
  • N. Sukumar and A. Tabarraei, Conforming polygonal interpolants, Interna. J. Num. Methods Eng., vol. 61, pp. 2045–2066, 2004.
  • S. De and K.J. Bathe, The method of finite spheres, Comput. Mech., vol. 25, no. 1, pp. 329–345, 2000.
  • S. De and K.J. Bathe, The method of finite spheres with improved numerical integration, Comp. Struct., vol. 79, no. 22, pp. 2183–2196, 2001.
  • J. Ma, V. Rokhlin, and S. Wandzura, Generalized quadrature of systems of arbitrary functions, SIAM J. Num. Analy., vol. 33, no. 3, pp. 971–996, 1996.
  • P. Silvester, Symmetric quadrature formula for simplexes, Math. Comput., vol. 24, pp. 95–100, 1970.
  • J.N. Lyness and D. Jespersen, Moderate degree symmetric quadrature rule for triangles, J. Instit. Mech. Applic., vol. 15, pp. 19–32, 1975.
  • H. Xiao and Z. Gimbutas, A numerical algorithm for construction of efficient quadrature rules in two and higher dimensions, Comp. Math. Applica., vol. 59, no. 2, pp. 663–676, 2010.
  • N. Sukumar and J.H. Prevost, Modeling quasi static crack growth with the extended finite element method part i: Computer implementation, Interna. J. Solids Struct., vol. 40, pp. 7513–7537, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.