190
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Least-squares finite element analysis of flow of a generalized Newtonian fluid past a circular cylinder

&
Pages 1186-1196 | Received 26 Jan 2017, Accepted 11 Apr 2017, Published online: 10 Nov 2017

References

  • E.D. Eason, A review of least-squares methods for solving partial differential equations, Int. J. Numer. Methods Eng., vol. 10, no. 5, pp. 1021–1046, 1976.
  • B.N. Jiang, The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics, Springer Science & Business Media, New York, NY, 1998.
  • P.B. Bochev and M.D. Gunzburger, Least-Squares Finite Element Methods, vol. 166, Springer Science & Business Media, New York, NY, 2009.
  • J.N. Reddy and D.K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics, 3rd Edition, CRC Press, Boca Raton, FL, 2010.
  • G.S. Payette and J.N. Reddy, On the roles of minimization and linearization in least squares finite element models of nonlinear boundary-value problems, J. Comput. Phys., vol. 230, no. 9, pp. 3589–3613, 2011.
  • J.N. Reddy, An Introduction to Nonlinear Finite Element Analysis: With Applications to heat Transfer, Fluid Mechanics, and Solid Mechanics, 2nd Edition, Oxford University Press, New York, NY, 2015.
  • B.N. Jiang and C.L. Chang, Least-squares finite elements for the Stokes problem, Comput. Methods Appl. Mech. Eng., vol. 78, no. 3, pp. 297–311, 1990.
  • B.N. Jiang and L.A. Povinelli, Least-squares finite element method for fluid dynamics, Comput. Methods Appl. Mech. Eng., vol. 81, no. 1, pp. 13–37, 1990.
  • B.N. Jiang, T.L. Lin, and L.A. Povinelli, Large-scale computation of incompressible viscous flow by least-squares finite element method, Comput. Methods Appl. Mech. Eng., vol. 114, no. 3, pp. 213–231, 1994.
  • B.N. Jiang and V. Sonnad, Least-squares solution of incompressible Navier-Stokes equations with the p-version of finite elements, Comput. Mech., vol. 15, no. 2, pp. 129–136, 1994.
  • B.N. Jiang, On the least-squares method, Comput. Methods Appl. Mech. Eng., vol. 152, no. 1, pp. 239–257, 1998.
  • M.M.J. Proot and M.I. Gerritsma, A least-squares spectral element formulation for the Stokes problem, J. Sci. Comput., vol. 17, no. 1-4, pp. 285–296, 2002.
  • M.M.J. Proot and M.I. Gerritsma, Least-squares spectral elements applied to the Stokes problem, J. Comput. Phys., vol. 181, no. 2, pp. 454–477, 2002.
  • J.P. Pontaza and J.N. Reddy, Spectral/hp least-squares finite element formulation for the Navier–Stokes equations, J. Comput. Phys., vol. 190, no. 2, pp. 523–549, 2003.
  • J.P. Pontaza and J.N. Reddy, Space–time coupled spectral/hp least-squares finite element formulation for the incompressible Navier–Stokes equations, J. Comput. Phys., vol. 197, no. 2, pp. 418–459, 2004.
  • J.P. Pontaza, Xu Diao, J.N. Reddy, and K.S. Surana, Least-squares finite element models of two-dimensional compressible flows, Finite Elem. Anal. Des., vol. 40, no. 5, pp. 629–644, 2004.
  • J.P. Pontaza, Least-squares variational principles and the finite element method: Theory, formulations, and models for solid and fluid mechanics, Finite Elem. Anal. Des., vol. 41, no. 7, pp. 703–728, 2005.
  • V. Prabhakar and J.N. Reddy, Spectral/hp penalty least-squares finite element formulation for the steady incompressible Navier–Stokes equations, J. Comput. Phys., vol. 215, no. 1, pp. 274–297, 2006.
  • M.I. Gerritsma, Direct minimization of the discontinuous least-squares spectral element method for viscoelastic fluids, J. Sci. Comput., vol. 27, no. 1–3, pp. 245–256, 2006.
  • V. Prabhakar and J.N. Reddy, A stress-based least-squares finite-element model for incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids, vol. 54, no. 11, pp. 1369–1385, 2007.
  • V. Prabhakar and J.N. Reddy, Spectral/hp penalty least-squares finite element formulation for unsteady incompressible flows, Int. J. Numer. Methods Fluids, vol. 58, no. 3, pp. 287–306, 2008.
  • V. Prabhakar, J.P. Pontaza, and J.N. Reddy, A collocation penalty least-squares finite element formulation for incompressible flows, Comput. Methods Appl. Mech. Eng., vol. 197, no. 6, pp. 449–463, 2008.
  • G.S. Payette and J.N. Reddy, On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problems, J. Comput. Phys., vol. 230, no. 9, pp. 3589–3613, 2011.
  • G.S. Payette, Spectral/hp Finite Element Models for Fluids and Structures, Ph.D. dissertation, Texas A&M University, 2012.
  • V.P. Vallala, Higher-Order Spectral/HP Finite Element Technology for Structures and Fluid Flows, Ph.D. dissertation, Texas A&M University, 2013.
  • V.P. Vallala, R. Sadr, and J.N. Reddy, Higher order spectral/hp finite element models of the Navier–Stokes equations, Int. J. Comput. Fluid Dyn., vol. 28, no. 1-2, pp. 16–30, 2014.
  • C.L. Chang and J.J. Nelson, Least-squares finite element method for the Stokes problem with zero residual of mass conservation, SIAM J. Numer. Anal., vol. 34, no. 2, pp. 480–489, 1997.
  • M.J. Proot and M.I. Gerritsma, Mass-and momentum conservation of the least-squares spectral element method for the stokes problem, J. Sci. Comput., vol. 27, no. 1–3, pp. 389–401, 2006.
  • J.M. Deang and M.D. Gunzburger, Issues related to least-squares finite element methods for the stokes equations, SIAM J. Sci. Comput., vol. 20, no. 3, pp. 878–906, 1998.
  • P.B. Bochev and M.D. Gunzburger, A locally conservative mimetic least-squares finite element method for the stokes equations. In: In Large-Scale Scientific Computing, Springer, Berlin, Germany, pp. 637–644, 2010.
  • P.B. Bochev and M.I. Gerritsma, A spectral mimetic least-squares method, Comput. Math. Appl., vol. 68, no. 11, pp. 1480–1502, 2014.
  • Namhee Kim and J.N. Reddy, A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids, Int. J. Numer. Methods Fluids, vol. 82, no. 9, pp. 541–566, 2016.
  • J.P. Pontaza, A least-squares finite element formulation for unsteady incompressible flows with improved velocity–pressure coupling, J. Comput. Phys., vol. 217, no. 2, pp. 563–588, 2006.
  • J.J. Heys, E. Lee, T.A. Manteuffel, and S.F. McCormick, An alternative least-squares formulation of the Navier–Stokes equations with improved mass conservation, J. Comput. Phys., vol. 226, no. 1, pp. 994–1006, 2007.
  • P.B. Bochev and M.D. Gunzburger, Finite element methods of least-squares type, SIAM Rev., vol. 40, no. 4, pp. 789–837, 1998.
  • B.C. Bell and K.S. Surana, A space–time coupled p-version least-squares finite element formulation for unsteady fluid dynamics problems, Int. J. Numer. Methods Eng., vol. 37, no. 20, pp. 3545–3569, 1994.
  • B.C. Bell and K.S. Surana, A space-time coupled p-version least squares finite element formulation for unsteady two-dimensional Navier-Stokes equations, Int. J. Numer. Methods Eng., vol. 39, no. 15, pp. 2593–2618, 1996.
  • K.S. Surana and J.S. Sandhu, Investigation of diffusion in p-version LSFE and STLSF formulations, Comput. Mech., vol. 16, no. 3, pp. 151–169, 1995.
  • A.T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., vol. 54, no. 3, pp. 468–488, 1984.
  • G.E. Karniadakis and S.J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd Edition, Oxford University Press, New York, NY, 2013.
  • M.O. Deville, P.F. Fischer, and E.H. Mund, High-Order Methods for Incompressible Fluid Flow, vol. 9, Cambridge University Press, Cambridge, UK, 2002.
  • J. Boyd, J.M. Buick, and S. Green, Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method, Phys. Fluids (1994-present), vol. 19, no. 9, p. 093103, 2007.
  • A. Pinarbasi and A. Liakopoulos, Stability of two-layer poiseuille flow of Carreau-Yasuda and Bingham-like fluids, J. Non-Newtonian Fluid Mech., vol. 57, no. 2, pp. 227–241, 1995.
  • K.S. Surana, M.K. Engelkemier, J.N. Reddy, and P.W. Tenpas, k-version least squares finite element processes for 2-D generalized Newtonian fluid flows, Int. J. Comput. Methods Eng. Sci. Mech., vol. 8, no. 4, pp. 243–261, 2007.
  • J.N. Reddy, An Introduction to Continuum Mechanics, Cambridge University Press, New York, 2nd ed., 2013.
  • F.A. Morrison, Understanding Rheology, Oxford University Press, 2001.
  • J. Aho, Rheological characterization of polymer melts in shear and extension: Measurement reliability and data for practical processing, Tampereen teknillinen yliopisto. Julkaisu-Tampere University of Technology, Publication, vol. 964, 2011.
  • T.A.L. Harris and D. Walczyk, A study of the rheological behavior of high-temperature polymer electrolyte membrane solutions, J. Appli. Polym. Sci., vol. 111, no. 3, pp. 1286–1292, 2009.
  • T.A. Davis, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, vol. 30, no. 2, pp. 196–199, 2004.
  • T.A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, vol. 30, no. 2, pp. 165–195, 2004.
  • T.A. Davis and I.S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appli., vol. 18, no. 1, pp. 140–158, 1997.
  • T.A. Davis and I.S. Duff, A combined unifrontal/multifrontal method for unsymmetric sparse matrices, ACM Trans. Math. Software, vol. 25, no. 1, pp. 1–20, 1999.
  • R.D. Blevins, Flow-Induced Vibration, Van Nostrand Reinhold Co., Inc., New York, NY, USA, 1990.
  • I. Lashgari, J.O. Pralits, F. Giannetti, and L. Brandt, First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder, J. Fluid Mech., vol. 701, pp. 201–227, 2012.
  • A.S. Grove, F.H. Shair, and E.E. Petersen, An experimental investigation of the steady separated flow past a circular cylinder, J. Fluid Mech., vol. 19, no. 01, pp. 60–80, 1964.
  • M. Kawaguti and P. Jain, Numerical study of a viscous fluid flow past a circular cylinder, J. Phys. Soc. Jpn, vol. 21, no. 10, pp. 2055–2062, 1966.
  • A.J. Smits, A Physical Introduction to Fluid Mechanics, John Wiley & Sons, New York, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.