289
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of toughness enhancement mechanisms in graphene nanocomposites

&
Pages 1197-1204 | Received 01 Feb 2017, Accepted 12 May 2017, Published online: 26 Jul 2017

References

  • H. Gao, B. Ji, I. L. Jäger, E. Arzt, and P. Fratzl, Materials become insensitive to flaws at nanoscale: Lessons from nature, Proc. Natl. Acad. Sci. USA, vol. 100, no. 10, pp. 5597–5600, 2003.
  • S. L. Mielke, T. Belytschko, and G. C. Schatz, Nanoscale fracture mechanics, Annu. Rev. Phys. Chem., vol. 58, pp. 185–209, 2007.
  • U. Lang and J. Dual, Microtensile tests using in situ atomic force microscopy. In: Applied Scanning Probe Methods XII, Springer, Heidelberg, pp. 165–182, 2009.
  • D. S. Gianola, A. Sedlmayr, R. Mönig, C. A. Volkert, R. C. Major, E. Cyrankowski, S. A. S. Asif, O. L. Warren, and O. Kraft, In situ nanomechanical testing in focused ion beam and scanning electron microscopes, Rev. Sci. Instrum., vol. 82, p. 063901, 2011.
  • L. Wang, Z. Zhang, and X. Han, In situ experimental mechanics of nanomaterials at the atomic scale, NPG Asia Mater., vol. 5, p. e40, 2013.
  • Y. Ganesan, Y. Lu, C. Peng, H. Lu, R. Ballarini, and J. Lou, Development and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials, J. Microelectromech. Syst., vol. 19, no. 3, pp. 675–682, 2010.
  • F. Hang, D. Lu, R. J. Bailey, I. Jimenez-Palomar, U. Stachewicz, B. Cortes-Ballesteros, M. Davies, M. Zech, C. Bödefeld, and A. H. Barber, In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy, Nanotechnology, vol. 22, no. 36, p. 365708, 2011.
  • P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P. E. Loya1, Z. Liu1, Y. Gong, J. Zhang, X. Zhang, P. M. Ajayan, T. Zhu, and J. Lou, Fracture toughness of graphene, Nat. Commun., vol. 5, p. 3782, 2014.
  • Y. T. Park, Y. Qian, C. Chan, T. Suh, M. G. Nejhad, C. W. Macosko, and A. Stein, Epoxy toughening with low graphene loading, Adv. Funct. Mater., vol. 25, no. 4, pp. 575–585, 2015.
  • S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler, and K. Schulte, Fracture toughness and failure mechanism of graphene based epoxy composites, Compos. Sci. Technol., vol. 97, pp. 90–99, 2014.
  • D. R. Bortz, E. G. Heras, and I. Martin-Gullon, Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites, Macromolecules, vol. 45, no. 1, pp. 238–245, 2011.
  • P. G. Allison, R. D. Moser, J. P. Schirer, R. L. Martens, J. B. Jordon, and M. Q. Chandler, In-situ nanomechanical studies of deformation and damage mechanisms in nanocomposites monitored using scanning electron microscopy, Mater. Lett., vol. 131, pp. 313–316, 2014.
  • M. L. Wu, Y. Chen, L. Zhang, H. Zhan, L. Qiang, and J. N. Wang, High-performance carbon nanotube/polymer composite fiber from layer-by-layer deposition, ACS Appl. Mater. Interfaces, vol. 8, no. 12, pp. 8137–8144, 2016.
  • M. A. Rafiee, J. Rafiee, †Z. Wang, H. Song, Zhong-Zhen Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, vol. 3, no. 12, pp. 3884–3890, 2009.
  • O. Eksik, J. Gao, S. A. Shojaee, A. Thomas, P. Chow, S. F. Bartolucci, D. A. Lucca, and N. Koratkar, Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives, ACS Nano, vol. 8, no. 5, pp. 5282–5289, 2014.
  • B. Johnsen, A. Kinloch, R. Mohammed, A. Taylor, and S. Sprenger, Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer, vol. 48, no. 2, pp. 530–541, 2007.
  • J. Ma, M. Mo, X. Du, P. Rosso, K. Friedrich, and H. Kuan, Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems, Polymer, vol. 49, no. 16, pp. 3510–3523, 2008.
  • T. H. Hsieh, A. J. Kinloch, A. C. Taylor, and I. A. Kinloch, The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer, J. Mater. Sci., vol. 46, no. 23, pp. 7525–7535, 2011.
  • J. T. Han and K. Cho, Layered silicate-induced enhancement of fracture toughness of epoxy molding compounds over a wide temperature range, Macromol. Mater. Eng., vol. 290, no. 12, pp. 1184–1191, 2005.
  • A. J. Kinloch and A. C. Taylor, The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites, J. Mater. Sci., vol. 41, no. 11, pp. 3271–3297, 2006.
  • M. Quaresimin, K. Schulte, M. Zappalorto, and S. Chandrasekaran, Toughening mechanisms in polymer nanocomposites: From experiments to modelling, Compos. Sci. Technol., vol. 123, pp. 187–204, 2016.
  • M. A. Rafiee, J. Rafiee, I. Srivastava et al., Fracture and fatigue in graphene nanocomposites, Small, vol. 6, pp. 179–183, 2010.
  • S. H. Cheng and C. T. Sun, Size-dependent fracture toughness of nanoscale structures: Crack-tip stress approach in molecular dynamics, J. Nanomech. Micromech, vol. 4, no. 4, pp. A4014001–A4014008, 2014.
  • A. Kumar, S. Li, S. Roy, J. King, and G. Odegard, Fracture properties of nanographene reinforced EPON 862 thermoset polymer system, Comp. Sci. Technol., vol. 114, pp. 87–93, 2015.
  • A. Kumar and S. Roy, Characterization of mixed mode fracture properties of nanographene reinforced epoxy and mode I delamination of its carbon fiber composite, Compos. Part B, in press.
  • C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, vol. 321, pp. 385–388, 2008.
  • T. Hobbiebrunken, B. Fiedler, M. Hojo, and M. Tanaka, Experimental determination of the true epoxy resin strength using micro-scaled specimens, Compos. Part A, vol. 38, pp. 814–818, 2007.
  • J. G. Williams, Fracture Mechanics of Polymers, Ellis Horwood Ltd., Chichester, UK, 1984.
  • R. M. Jones, Mechanics of Composite Materials, 2nd ed., Taylor & Francis, UK, 1999.
  • X. Wang, J. Jin, and M. Song, An investigation of the mechanism of graphene toughening epoxy, Carbon, vol. 65, pp. 324–333, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.