307
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Analytical modeling of low velocity impact on carbon nanotube-reinforced composite (CNTRC) plates

, &
Pages 394-406 | Received 28 Mar 2016, Accepted 15 Aug 2017, Published online: 26 Dec 2017

References

  • S. Ijima, “Helical microtubules of graphite carbon,” Nature, vol. 354, no. 6, pp. 356–368, 1991.
  • M. Loos, “Carbon nanotube reinforced composites,” in Carbon Nanotube Reinforced Composites, M. Loos, Ed. Oxford: William Andrew Publishing, 2015, pp. 285–289.
  • G. M. Odegard, T. S. Gates, K. E. Wise, C. Park, and E. J. Siochi, “Constitutive modeling of nanotube–reinforced polymer composites,” Compos. Sci. Technol., vol. 63, no. 11. pp. 1671–1687, 2003.
  • N. Hu, H. Fukunaga, C. Lu, M. Kameyama, and B. Yan, “Prediction of elastic properties of carbon nanotube reinforced composites,” vol. 461, pp. 1685–1710, 2005.
  • P. Bonnet, D. Sireude, B. Garnier, and O. Chauvet, “Thermal properties and percolation in carbon nanotube-polymer composites,” Appl. Phys. Lett., vol. 91, no. 20, pp. 1910–2030, 2007.
  • R. Zhu, E. Pan, and A. Roy, “Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites,” Mater. Sci. Eng.: A, vol. 447, no. 1, pp. 51–57, 2007.
  • G. Bhardwaj, A. K. Upadhyay, R. Pandey, and K. K. Shukla, “Non-linear flexural and dynamic response of CNT reinforced laminated composite plates,” Compos. Part B: Eng., vol. 45, no. 1, pp. 89–100, 2013.
  • A. Ghorbanpour Arani, E. Haghparast, Z. Khoddami Maraghi, and S. Amir, “Static stress analysis of carbon nano-tube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields,” Compos. Part B: Eng., vol. 68, no. 0, pp. 136–145, 2015.
  • Y. Han, and J. Elliott, “Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites,” Comput. Mater. Sci., vol. 39, no. 2, pp. 315–323, 2007.
  • M. K. Hassanzadeh-Aghdam, R. Ansari, and A. Darvizeh, “A new micromechanics approach for predicting the elastic response of polymer nanocomposites reinforced with randomly oriented and distributed wavy carbon nanotubes,” J. Compos. Mater., vol. 51, no. 20, pp. 2899–2912, 2017. http://journals.sagepub.com/doi/abs/10.1177/0021998317712571#articleCitationDownloadContainer.
  • K. Yanase, S. Moriyama, and J. W. Ju, “Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites,” Acta Mech., vol. 224, no. 7, pp. 1351–1364, 2013.
  • R. Ansari, and M. K. Hassanzadeh-Aghdam, “Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites,” Meccanica, vol. 52, no. 7, pp. 1625–1640, 2017.
  • R. Ansari, E. Hasrati, M. Faghih Shojaei, R. Gholami, and A. Shahabodini, “Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy,” Physica E: Low-dimensional Syst. Nanostruct., vol. 69, pp. 294–305, 2015.
  • L. W. Zhang, Z. G. Song, P. Qiao, and K. M. Liew, “Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads,” Comput. Methods Appl. Mech. Eng., vol. 313, pp. 889–903, 2017.
  • M. J. Mahmoodi, and M. Vakilifard, “A comprehensive micromechanical modeling of electro-thermo-mechanical behaviors of CNT reinforced smart nanocomposites,” Mater. Des., vol. 122, pp. 347–365, 2017.
  • A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, and A. Mohajeri, “Mechanical properties of multi-walled carbon nanotube/epoxy composites,” Mater. Des., vol. 31, no. 9, pp. 4202–4208, 2010.
  • R. Ansari, M. Faghih Shojaei, V. Mohammadi, R. Gholami, and F. Sadeghi, “Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams,” Compos. Struct., vol. 113, pp. 316–327, 2014.
  • R. Ansari, A. Shahabodini, and M. Faghih Shojaei, “Vibrational analysis of carbon nanotube-reinforced composite quadrilateral plates subjected to thermal environments using a weak formulation of elasticity,” Compos. Struct., vol. 139, pp. 167–187, 2016.
  • A. Zarei, M. Nejati, S. Jafari Mehrabadi, and H. Farahani, “Using the third-order shear deformation theory to examine magnetic-mechanical buckling of a two-dimensional functionally graded cylindrical panel with longitudinal and circumferential stiffeners,” Mech. Adv. Mater. Struct., vol. 23, no. 12, pp. 1398–1413, 2016.
  • M. Nejati, K. Malekzadehfard, A. Eslampanah, and S. S. Jafari, “Free vibration analysis of reinforced composite functionally graded plates with steady state thermal conditions,” Latin Am. J. Solids Struct., vol. 14, 05, pp. 886–905, 2017.
  • R. Ansari, and M. K. Hassanzadeh Aghdam, “Micromechanics-based viscoelastic analysis of carbon nanotube-reinforced composites subjected to uniaxial and biaxial loading,” Compos. Part B: Eng., vol. 90, pp. 512–522, 2016.
  • S. Feli, and S. S. Jafari, “Analytical modeling for perforation of foam-composite sandwich panels under high-velocity impact,” J. Br. Soc. Mech. Sci. Eng., vol. 39, no. 2, pp. 401–412, 2017.
  • T. S. Reddy, P. R. S. Reddy, and V. Madhu, “Response of E-glass/Epoxy and Dyneema® Composite Laminates Subjected to low and High Velocity Impact,” Procedia Eng., vol. 173, pp. 278–285, 2017.
  • H. Singh, B. C. Hazarika, and S. Dey, “Low velocity impact responses of functionally graded plates,” Procedia Eng., vol. 173, pp. 264–270, 2017.
  • K. Arslan, R. Gunes, M. K. Apalak, and J. N. Reddy, “Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates,” J. Compos. Mater., 2017. http://journals.sagepub.com/doi/abs/10.1177/0021998317695423#articleCitationDownloadContaine
  • S. Feli, and M. Mahdipour Jalilian, “Three-dimensional solution of low-velocity impact on sandwich panels with hybrid nanocomposite face sheets,” Mech. Adv. Mater. Struct., pp. 1–13, 2017.
  • H. Shanazari, G. Liaghat, S. Feli, and H. Hadavinia, “Analytical and experimental study of high-velocity impact on ceramic/nanocomposite targets,” J. Compos. Mater., p. 0021998317692658, 2017.
  • R. Olsson, “Closed form prediction of peak load and delamination onset under small mass impact,” Compos. Struct., vol. 59, no. 3, pp. 341–349, 2003.
  • R. Olsson, “Analytical prediction of large mass impact damage in composite laminates,” Compos. Part A: Appl. Sci. Manuf., vol. 32, no. 9, pp. 1207–1215, 2001.
  • S. M. R. Khalili, A. Shokuhfar, K. Malekzadeh, and F. Ashenai Ghasemi, “Low-velocity impact response of active thin-walled hybrid composite structures embedded with SMA wires,” Thin-Walled Struct., vol. 45, no. 9, pp. 799–808, 2007.
  • B. A. Selim, L. W. Zhang, and K. M. Liew, “Impact analysis of CNT-reinforced composite plates based on Reddy's higher-order shear deformation theory using an element-free approach,” Compos. Struct., vol. 170, pp. 228–242, 2017.
  • P. Malekzadeh, and M. Dehbozorgi, “Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates,” Compos. Struct., vol. 140, pp. 728–748, 2016.
  • S. W. Gong, and K. Y. Lam, “Transient response of stiffened composite plates subjected to low velocity impact,” Compos. Part B: Eng., vol. 30, no. 5, pp. 473–484, 1999.
  • F. Ebrahimi, and S. Habibi, “Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments,” Mech. Adv. Mater. Struct., pp. 1–14, 2017.
  • N. K. Naik, Y. Chandra Sekher, and S. Meduri, “Damage in woven-fabric composites subjected to low-velocity impact,” Compos. Sci. Technol., vol. 60, 5, pp. 731–744, 2000.
  • M. O. Pierson, and R. Vaziri, “Analytical solution for low-velocity impact response of composite plates,” AIAA J., vol. 34, no. 8, pp. 1633–1640, 1996.
  • D.-L. Shi, X.-Q. Feng, Y. Y. Huang, K.-C. Hwang, and H. Gao, “The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites,” J. Eng. Mater. Technol., vol. 126, no. 3, pp. 250–257, 2004.
  • T. Mori, and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., vol. 21, no. 5, pp. 571–574, 1973.
  • D. L. Shi, X. Q. Feng, Y. Y. Huang, and K. C. Hwang. “Critical evaluation of the stiffening effect of carbon nanotubes in composites,” Key Eng. Mater. vol. 261–263, pp. 1487–1492, 2004. https://www.scientific.net/KEM.261-263.1487
  • E. M. Soliman, M. P. Sheyka, and M. R. Taha, “Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes,” Int. J. Impact Eng., vol. 47, no. 0, pp. 39–47, 2012.
  • Z.-X. Wang, J. Xu, and P. Qiao, “Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates,” Compos. Struct., vol. 108, no. 0, pp. 423–434, 2014.
  • D. Delfosse, R. Vaziri, M. Pierson, and A. Poursartip. “Analysis of the nonpenetrating impact behaviour of CFRP laminates,” in Proc. 9th Int. Conf. Composite Mater., 366ą373. 1993.
  • K. Karas, “Platten unter seitlichem Stoß,” Ingenieur-Archiv, vol. 10, no. 4, pp. 237–250, 1939.
  • J. N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis. CRC press, New York, 2004.
  • G. H. Payeganeh, F. Ashenai Ghasemi, and K. Malekzadeh, “Dynamic response of fiber–metal laminates (FMLs) subjected to low-velocity impact,” Thin-Walled Struct., vol. 48, no. 1, pp. 62–70, 2010.
  • R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates,” J. Appl. Mech., vol. 18, pp. 31–38, 1951.
  • R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, vol. 13, no. 4, pp. 213–222, 1965.
  • V. Popov, V. Van Doren, and M. Balkanski, “Elastic properties of crystals of single-walled carbon nanotubes,” Solid State Commun., vol. 114, no. 7, pp. 395–399, 2000.
  • M. Yas, and M. Heshmati, “Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load,” Appl. Math. Modell., vol. 36, no. 4, pp. 1371–1394, 2012.
  • A. Shokuhfar, S. M. R. Khalili, F. Ashenai Ghasemi, K. Malekzadeh, and S. Raissi, “Analysis and optimization of smart hybrid composite plates subjected to low-velocity impact using the response surface methodology (RSM),” Thin-Walled Struct., vol. 46, no. 11, pp. 1204–1212, 2008.
  • I. H. Choi, and C. H. Lim, “Low-velocity impact analysis of composite laminates using linearized contact law,” Compos. Struct., vol. 66, no. 1–4, pp. 125–132, 2004.
  • A. P. Christoforou, and S. R. Swanson, “Analysis of impact response in composite plates,” Int. J. Solids Struct., vol. 27, no. 2, pp. 161–170, 1991.
  • R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates,” Appl. Mech., vol. 18, pp. 31–38, 1951.
  • A. P. Christoforou, A. A. Elsharkawy, and L. H. Guedouar, “An inverse solution for low-velocity impact in composite plates,” Comput. Struct., vol. 79, no. 29–30, pp. 2607–2619, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.