209
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Higher-order global-local theory with novel 3D-equilibrium-based corrections for static, frequency, and dynamic analysis of sandwich plates with flexible auxetic cores

&
Pages 559-578 | Received 25 Mar 2017, Accepted 09 Sep 2017, Published online: 10 Jan 2018

References

  • T. Kant and K. Swaminathan, “Estimation of transverse/interlaminar stresses in laminated composites—a selective review and survey of current developments,” Compos. Struct., vol. 49, pp. 65–75, 2000. doi:10.1016/S0263-8223(99)00126-9.
  • M. Shariyat, S. M. R. Khalili, and I. Rajabi. “A global–local theory with stress recovery and a new post-processing technique for stress analysis of asymmetric orthotropic sandwich plates with single/dual cores,” Comput. Methods Appl. Mech. Eng., vol. 286, pp. 192–215, 2015. doi:10.1016/j.cma.2014.12.015.
  • M. Di Sciuva, U. Icardi, and L. Librescu, “Effects of interfacial damage on the global and local static response of cross-ply laminates,” Int. J. Fract., vol. 96, pp. 17–35, 1999. doi:10.1023/A:1018649824301.
  • J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Boca Raton: CRC Press, 2nd Edition, 2004.
  • W. Chen, and Z. Wu, “A selective review on recent development of displacement-based laminated plate theories,” Recent Patents Mech. Eng., vol. 1, pp. 29–44, 2008. doi:10.2174/2212797610801010029.
  • M. Shariyat, “Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory,” Thin-Walled Struct., vol. 45, pp. 439–452, 2007. doi:10.1016/j.tws.2007.03.004.
  • L. M. S. Castro, A. J. M. Ferreira, S. Bertoluzza, R. C. Batra, and J. N. Reddy, “A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory,” Compos. Struct., vol. 92, pp. 1786–1792, 2010. doi:10.1016/j.compstruct.2010.01.021.
  • M. Shariyat and S. H. Hosseini, “Accurate eccentric impact analysis of the preloaded SMA composite plates, based on a novel mixed-order hyperbolic global–local theory,” Compos. Struct., vol. 124, pp. 140–151, 2015. doi:10.1016/j.compstruct.2015.01.002.
  • M. Shariyat and A. Niknami, “Layerwise numerical and experimental impact analysis of temperature-dependent transversely flexible composite plates with embedded SMA wires in thermal environments,” Compos. Struct., vol. 153, pp. 692–703, 2016. doi:10.1016/j.compstruct.2016.06.070.
  • R. A. S. Moreira and J. Dias Rodrigues, “A layerwise model for thin soft core sandwich plates,” Comput. Struct., vol. 84, pp. 1256–1263, 2006. doi:10.1016/j.compstruc.2006.01.020.
  • D. Elmalich and O. Rabinovitch, “A high-order finite element for dynamic analysis of soft-core sandwich plates,” J. Sandwich Struct. Mater., vol. 14, pp. 525–555, 2012. doi:10.1177/1099636212449841.
  • O. Rabinovitch and Y. Frostig, “High-order behavior of fully bonded and delaminated circular sandwich plates with laminated face sheets and a “soft” core,” Int. J. Solids Struct., vol. 39, pp. 3057–3077, 2002. doi:10.1016/S0020-7683(02)00239-1.
  • M. Ćetković and D. Vuksanović, “Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model,” Compos. Struct., vol. 88, pp. 219–227, 2009. doi:10.1016/j.compstruct.2008.03.039.
  • Z. Wu and W. Chen, “Free vibration of laminated composite and sandwich plates using global–local higher-order theory,” J. Sound Vib., vol. 298, pp. 333–349, 2006. doi:10.1016/j.jsv.2006.05.022.
  • J. B. Dafedar, Y. M. Desai, and A. A. Mufti, “Stability of sandwich plates by mixed, higher-order analytical formulation,” Int. J. Solids Struct., vol. 40, pp. 4501–4517, 2003. doi:10.1016/S0020-7683(03)00283-X.
  • S. Kapuria and J. K. Nath, “On the accuracy of recent global–local theories for bending and vibration of laminated plates,” Compos. Struct., vol. 95, pp. 163–172, 2013. doi:10.1016/j.compstruct.2012.06.018.
  • M. Botshekanan Dehkordia, M. Cinefrab, S. M. R. Khalilia, and E. Carrera, “Mixed LW/ESL models for the analysis of sandwich plates with composite faces,” Compos. Struct., vol. 98, pp. 330–339, 2013. doi:10.1016/j.compstruct.2012.11.016.
  • X. Li and D. Liu, “Generalized laminate theories based on double superposition hypothesis,” Int. J. Numer. Methods Eng., vol. 40, no. 7, pp. 1197–1212, 1997. doi:10.1002/(SICI)1097-0207(19970415)40:7<1197::AID-NME109>3.0.CO;2-B.
  • M. Shariyat, “A generalized high-order global–local plate theory for nonlinear bending and buckling analyses of imperfect sandwich plates subjected to thermo-mechanical loads,” Compos. Struct., vol. 92, pp. 130–143, 2010. doi:10.1016/j.compstruct.2009.07.007.
  • M. Shariyat, “A generalized global–local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads,” Int. J. Mech. Sci., vol. 52, pp. 495–514, 2010. doi:10.1016/j.ijmecsci.2009.11.010.
  • M. Shariyat, “Non-linear dynamic thermo-mechanical buckling analysis of the imperfect laminated and sandwich cylindrical shells based on a global-local theory inherently suitable for non-linear analyses,” Int. J. Non-Linear Mech., vol. 46, pp. 253–271, 2011. doi:10.1016/j.ijnonlinmec.2010.09.006.
  • R. Lakes, “Foam structures with a negative Poisson's ratio,” Science, vol. 235, pp. 1038–1040, 1987. doi:10.1126/science.235.4792.1038.
  • K. E. Evans and A. Alderson, “Auxetic materials: functional materials and structures from lateral thinking,” Adv. Mater., vol. 12, p. 617, 2000. doi:10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3.
  • T.-C. Lim, Auxetic Materials and Structures. Singapore: Springer, 2015.
  • G. Imbalzano et al., “Three-dimensional modelling of auxetic sandwich panels for localised impact resistance,” J. Sandwich Struct. Mater., 1099636215618539, 2015.
  • M. H. Mansouri and M. Shariyat, “Biaxial thermo-mechanical buckling of orthotropic auxetic FGM plates with temperature and moisture dependent material properties on elastic foundations,” Compos. Part B, vol. 83, pp. 88–104, 2015. doi:10.1016/j.compositesb.2015.08.030.
  • K. Asemi and M. Shariyat, “Three-dimensional biaxial post-buckling analysis of heterogeneous auxetic rectangular plates on elastic foundations by new criteria,” Comput. Methods Appl. Mech. Eng., vol. 302, pp. 1–26, 2016. doi:10.1016/j.cma.2015.12.026.
  • M. M. Alipour and M. Shariyat, “Analytical layerwise free vibration analysis of circular/annular composite sandwich plates with auxetic cores,” Int. J. Mech. Mater. Des., vol. 13, pp. 125–157, 2017. doi:10.1007/s10999-015-9321-2.
  • M. M. Alipour and M. Shariyat, “Analytical zigzag formulation with 3D elasticity corrections for bending and stress analysis of circular/annular composite sandwich plates with auxetic cores,” Compos. Struct., vol. 132, pp. 175–197, 2015. doi:10.1016/j.compstruct.2015.05.003.
  • Y. Frostig and O. T. Thomsen, “High-order free vibration of sandwich panels with a flexible core,” Int. J. Solids Struct., vol. 41, pp. 1697–1724, 2004. doi:10.1016/j.ijsolstr.2003.09.051.
  • T. Wang, V. Sokolinsky, S. Rajaram, and S. R. Nutt, “Consistent higher-order free vibration analysis of composite sandwich plates,” Compos. Struct., vol. 82, pp. 609–621, 2008. doi:10.1016/j.compstruct.2007.02.009.
  • V. N. Burlayenko and T. Sadowski, “Dynamic Analysis of Debonded Sandwich Plates with Flexible Core–Numerical Aspects and Simulation,” in Shell-like Structures, H. Altenbach, V. A. Eremeyev. Eds. Berlin Heidelberg: Springer, 2011, pp. 415–440.
  • A. Niknami and M. Shariyat, “Refined constitutive, bridging, and contact laws for including effects of the impact-induced temperature rise in impact responses of composite plates with embedded SMA wires,” Thin-Walled Struct., vol. 106, pp. 166–178, 2016. doi:10.1016/j.tws.2016.04.011.
  • M. Shariyat and A. Niknami, “Impact analysis of strain-rate-dependent composite plates with SMA wires in thermal environments: Proposing refined coupled thermoelasticity, constitutive, and contact models,” Compos. Struct., vol. 136, pp. 191–203, 2016. doi:10.1016/j.compstruct.2015.10.003.
  • M. Shariyat and A. Niknami, “Layerwise numerical and experimental impact analysis of temperature-dependent transversely flexible composite plates with embedded SMA wires in thermal environments,” Compos. Struct., vol. 153, pp. 692–703, 2016. doi:10.1016/j.compstruct.2016.06.070.
  • M. Shariyat and M. M. Alipour, “Semi-analytical consistent zigzag-elasticity formulations with implicit layerwise shear correction factors for dynamic stress analysis of sandwich circular plates with FGM layers,” Compos.: Part B, vol. 49, pp. 43–64, 2013. doi:10.1016/j.compositesb.2013.01.001.
  • M. Shariyat and M. M. Alipour, “A novel shear correction factor for stress and modal analyses of annular FGM plates with non-uniform inclined tractions and non-uniform elastic foundations,” Int. J. Mech. Sci., vol. 87, pp. 60–71, 2014. doi:10.1016/j.ijmecsci.2014.05.032.
  • M. Shariyat and M. M. Alipour, “Novel layerwise shear correction factors for zigzag theories of circular sandwich plates with functionally graded layers,” Latin Am. J. Solids Struct., vol. 12, no. 7, pp. 1362–1396, 2015. doi:10.1590/1679-78251477.
  • M. Cho, K. O. Kim and M. H. Kim, “Efficient higher-order shell theory for laminated composites,” Compos. Struct., vol. 34, pp. 197–212, 1996. doi:10.1016/0263-8223(95)00145-X.
  • Z. Wu and W. Chen, “A global-local higher order theory for multilayered shells and the analysis of laminated cylindrical shell panels,” Compos. Struct., vol. 84, pp. 350–361, 2008. doi:10.1016/j.compstruct.2007.10.006.
  • M. Shariyat, “An accurate double superposition global–local theory for vibration and bending analyses of cylindrical composite and sandwich shells subjected to thermomechanical loads,” Presented at the Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 225, pp. 1816–1832, 2011.
  • N. J. Pagano, “Exact solution of rectangular bi-directional composites and sandwich plates,” J. Compos. Mater., vol. 4, pp. 20–34, 1970. doi:10.1177/002199837000400102.
  • M. Shariyat and M. M. Alipour, “A zigzag theory with local shear correction factors for semi-analytical bending modal analysis of functionally graded viscoelastic circular sandwich plates,” J. Solid Mech., vol. 4, no. 1, pp. 84–105, 2012.
  • M. Shariyat and M. M. Alipour, “Novel layerwise shear correction factors for zigzag theories of circular sandwich plates with functionally graded layers,” Latin Am. J. Solids Struct., vol. 12, no. 7, pp. 1362–1396, 2015. doi:10.1590/1679-78251477.
  • L. Demasi, “Partially zig-zag advanced higher order shear deformation theories based on the generalized unified formulation,” Compos. Struct., vol. 94, pp. 363–375, 2012. doi:10.1016/j.compstruct.2011.07.022.
  • L. Iurlaro, M. Gherlone, M. Di Sciuva, and A. Tessler, “Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner's Mixed Variational Theorem,” Compos. Struct., vol. 133, pp. 809–817, 2015. doi:10.1016/j.compstruct.2015.08.004.
  • E. Carrera, “Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking,” Arch. Comput. Methods Eng., vol. 10, pp. 215–296, 2003. doi:10.1007/BF02736224.
  • H. C. Huang, Static and dynamic analyses of plates and shells: theory, software and applications. Berlin Heidelberg: Springer-Verlag, 1989.
  • J. Dolbow, N. Moes, and T. Belytschko, “Modeling fracture in Mindlin-Reissner plates with the extended finite element method,” Int. J. Solids Struct., vol. 37, pp. 7161–7183, 2000. doi:10.1016/S0020-7683(00)00194-3.
  • W. Kanok-Nukulchai, W. Barry, K. Saran-Yasoontorn, and P. H. Bouillard, “On elimination of shear locking in the element-free Galerkin method,” Int. J. Numer. Meth. Eng., vol. 52, pp. 705–725, 2001. doi:10.1002/nme.223.
  • J. M. A. Cesar de Sa, R. M. N. Jorge, R. A. Fontes Valente, and P. M. Almeida Areias, “Development of shear locking-free shell elements using an enhanced assumed strain formulation,” Int. J. Numer. Meth. Eng., vol. 53, pp. 1721–1750, 2002. doi:10.1002/nme.360.
  • A. K. Nayak, S. S. J. Moy, and R. A. Shenoi, “Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory,” Compos.: Part B, vol. 33, pp. 505–519, 2002. doi:10.1016/S1359-8368(02)00035-5.
  • V. S. Thankam, G. Singh, G. V. Rao, and A. K. Rath, “Thermal post-buckling behaviour of laminated plates using a shear-flexible element based on coupled-displacement field,” Compos. Struct., vol. 59, pp. 351–359, 2003. doi:10.1016/S0263-8223(02)00243-X.
  • A. H. Sheikh and A. Chakrabarti, “A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates,” Finite Elem. Anal. Des., vol. 39, pp. 883–903, 2003 doi:10.1016/S0168-874X(02)00137-3.
  • K. M. Liew and X. L. Chen, “Buckling of rectangular Mindlin plates subjected to partial in-plane edge loads using the radial point interpolation method,” Int. J. Solids Struct., vol. 41, pp. 1677–1695, 2004. doi:10.1016/j.ijsolstr.2003.10.022.
  • L. D. Croce and P. Venini, “Finite elements for functionally graded Reissner–Mindlin plates,” Comput. Methods Appl. Mech. Eng., vol. 193, pp. 705–725, 2004. doi:10.1016/j.cma.2003.09.014.
  • P. Ribeiro, “First-order shear deformation, p-version, finite element for laminated plate nonlinear vibrations,” AIAA J., vol. 43, pp. 1371–1379, 2005. doi:10.2514/1.4025.
  • Y. X. Zhang and K. S. Kim, “Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements,” Compos. Struct., vol. 72, pp. 301–310, 2006. doi:10.1016/j.compstruct.2005.01.001.
  • G. R. Liu, X. Zhao, K. Y. Dai, Z. H. Zhong, G. Y. Li, and X. Han, “Static and free vibration analysis of laminated composite plates using the conforming radial point interpolation method,” Compos. Sci. Technol., vol. 68, pp. 354–366, 2008. doi:10.1016/j.compscitech.2007.07.014.
  • M. Shariyat and K. Asemi, “3D energy-based finite element elasticity approach for shear postbuckling analysis of functionally graded plates on elastic foundations,” Compos. Struct., vol. 152, pp. 579–591, 2016. doi:10.1016/j.compstruct.2016.05.057.
  • S. Reese, P. Wriggers, and B. D. Reddy, “A new locking-free brick element technique for large deformation problems in elasticity,” Comput. Struct., vol. 75, pp. 291–304, 2000. doi:10.1016/S0045-7949(99)00137-6.
  • J. Yang, Q. Huang, H. Hu, G. Giunta, S. Belouettar, and M. Potier-Ferry, “A new family of finite elements for wrinkling analysis of thin films on compliant substrates,” Compos. Struct., vol. 119, pp. 568–577, 2015. doi:10.1016/j.compstruct.2014.09.040.
  • A. Ghaznavi and M. Shariyat, “Non-linear layerwise dynamic response analysis of sandwich plates with soft auxetic cores and embedded SMA wires experiencing cyclic loadings,” Compos. Struct., vol. 171, pp. 185–197, 2017. doi:10.1016/j.compstruct.2017.03.012.
  • D. Wang and J. S. Chen, “Locking-free stabilized conforming nodal integration for meshfree Mindlin–Reissner plate formulation,” Comput. Methods Appl. Mech. Eng., vol. 193, pp. 1065–1083, 2004. doi:10.1016/j.cma.2003.12.006.
  • Q. Li, J. Soric, T. Jarak, and S. N. Atluri, “A locking-free meshless local Petrov–Galerkin formulation for thick and thin plates,” J. Comput. Phys., vol. 208, pp. 116–133, 2005. doi:10.1016/j.jcp.2005.02.008.
  • R. P. R. Cardoso, J. W. Yoon, and R. A. F. Valente, “A new approach to reduce membrane and transverse shear locking for one-point quadrature shell elements: linear formulation,” Int. J. Numer. Meth. Eng., vol. 66, pp. 214–249, 2006. doi:10.1002/nme.1548.
  • T. Q. Bui, M. N. Nguyen, and C. Zhang, “Buckling analysis of Reissner–Mindlin plates subjected to in-plane edge loads using a shear-locking-free and mesh-free method,” Eng. Anal. Boundary Elem., vol. 35, pp. 1038–1053, 2011. doi:10.1016/j.enganabound.2011.04.001.
  • T. Nguyen-Thoi, P. Phung-Van, H. Nguyen-Xuan, and C. Thai-Hoang, “A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–Mindlin plates,” Int. J. Numer. Meth. Eng., vol. 91, pp. 705–741, 2012. doi:10.1002/nme.4289.
  • C. H. Thai, L. V. Tran, D. T. Tran, T. Nguyen-Thoi, and H. Nguyen-Xuan, “Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method,” Appl. Math. Modell., vol. 36, pp. 5657–5677, 2012. doi:10.1016/j.apm.2012.01.003.
  • S. Brischetto, E. Carrera, and L. Demasi, “Improved bending analysis of sandwich plates using a zig-zag function,” Compos. Struct., vol. 89, pp. 408–415, 2009. doi:10.1016/j.compstruct.2008.09.001.
  • M. K. Pandit, A. H. Sheikh, and B. N. Singh, “An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core,” Finite Elem. Anal. Des., vol. 44, pp. 602–610, 2008. doi:10.1016/j.finel.2008.02.001.
  • A. A. Khdeir and J. N. Reddy, “Exact solutions for the transient response of symmetric cross-ply laminates using a higher-order plate theory,” Compos. Sci. Technol., vol. 34, pp. 205–224, 1989. doi:10.1016/0266-3538(89)90029-8.
  • H. Altenbach and A. Ochsner, “Cellular and porous materials in structure and processes,” Udine: CISM, 2010.
  • R. Lakes, “Advances in negative Poisson's ratio materials,” Adv. Mater., vol. 5, pp. 293–296, 1993. doi:10.1002/adma.19930050416.
  • R. S. Lakes, “Design considerations for negative Poisson's ratio materials,” ASME J. Mech. Des., vol. 115, pp. 696–700, 1993. doi:10.1115/1.2919256.
  • Y. C. Wang, R. Lakes, and A. Butenhoff, “Influence of cell size on re-entrant transformation of negative Poisson's ratio reticulated polyurethane foams,” Cell. Polym., vol. 20, pp. 373–385, 2001.
  • T. C. Lim, Auxetic materials and structures. Singapore: Springer, 2015.
  • J. M. Whitney and N. J. Pagano, “Shear deformation in heterogeneous anisotropic plates,” ASME J. Appl. Mech., vol. 37, pp. 1031–1036, 1970. doi:10.1115/1.3408654.
  • J. N. Reddy, “A simple higher-order theory for laminated composite plates,” ASME, J. Appl. Mech., vol. 51, pp. 745–752, 1984. doi:10.1115/1.3167719.
  • N. R. Senthilnathan, K. H. Lim, K. H. Lee, and S. T. Chow. “Buckling of shear deformable plates,” AIAA J., vol. 25, pp. 1268–1271, 1987. doi:10.2514/3.48742.
  • B. N. Pandya and T. Kant, “Finite element stress analysis of laminated composite plates using higher-order displacement model,” Compos. Sci. Technol., vol. 32, pp. 137–155, 1998. doi:10.1016/0266-3538(88)90003-6.
  • T. Kant and B. S. Manjunatha, “An unsymmetric FRC laminate C0 Finite element model with 12 degrees of freedom per node,” Eng. Comput., vol. 5, pp. 300–308, 1998. doi:10.1108/eb023749.
  • M. K. Rao and Y. M. Desai, “Analytical solutions for vibrations of laminated and sandwich plates using mixed theory,” Compos. Struct., vol. 63, pp. 361–373, 2004.
  • M. Shariyat and M. R. Eslami, “Dynamic buckling and postbuckling of imperfect orthotropic cylindrical shells under mechanical and thermal loads, based on the three dimensional theory of elasticity,” Trans. ASME, J. Appl. Mech., vol. 66, no. 2, pp. 476–484, 1999. doi:10.1115/1.2791072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.