207
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Stress intensity factor evaluations for a curved crack in orthotropic particulate composites using an interaction integral method

&
Pages 631-638 | Received 18 Apr 2017, Accepted 17 Aug 2017, Published online: 04 Jan 2018

References

  • J. R. Rice, “A path independent integral and the approximate analysis of strain concentration by notches and cracks,” J. Appl. Mech., vol. 35, pp. 379–386, 1968. DOI:10.1115/1.3601206.
  • M. Stern, E. B. Becker, and R. S. Dunham, “A contour integral computation of mixed-mode stress intensity factors,” Int. J. Fract., vol. 12(3), pp. 359–368, 1976.
  • S. S. Wang, J. F. Yau, and H. T. Corten, “A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity,” Int. J. Fract., vol. 16(3), pp. 247–259, 1980. DOI:10.1007/BF00013381.
  • T. Nakamura, “Three-dimensional stress fields of elastic interface cracks,” J. Appl. Mech., vol. 58, pp. 939–946, 1991. DOI:10.1115/1.2897711.
  • R. Nahta and B. Moran, “Domain integrals for axisymmetric interface crack problems,” Int. J. Solids. Struct., vol. 30(15), pp. 2027–2040, 1993. DOI:10.1016/0020-7683(93)90049-D.
  • M. Gosz, J. Dolbow, and B. Moran, “Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks,” Int. J. Solids Struct., vol. 35(15), pp. 1763–1783, 1998. DOI:10.1016/S0020-7683(97)00132-7.
  • M. Gosz and B. Moran, “An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions,” Eng. Fract. Mech., vol. 69, pp. 299–319, 2002. DOI:10.1016/S0013-7944(01)00080-7.
  • L. C. Guo, L. Z. Wu, T. Zeng, and L. Ma, “Mode I crack problem for a functionally graded orthotropic strip,” Eur. J. Mech. A – Solids., vol. 23, pp. 219–234, 2004. DOI:10.1016/j.euromechsol.2003.12.006.
  • L. C. Guo, L. Z. Wu, T. Zeng, and L. Ma, “The dynamic fracture behavior of a functionally graded coating-substrate system,” Compos. Struct., vol. 64, pp. 433–441, 2004. DOI:10.1016/j.compstruct.2003.09.044.
  • Z. G. Zhou and B. Wang, “Two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading,” Int. J. Solids Struct., vol. 41, pp. 4407–4422, 2004. DOI:10.1016/j.ijsolstr.2004.03.004.
  • Z. G. Zhou, B. Wang, and Y. G. Sun, “Two collinear interface cracks in magneto-electro-elastic composites,” Int. J. Solids Struct., vol. 42, pp. 1155–1167, 2004.
  • Z. G. Zhou, L. Z. Wu, and B. Wang, “The dynamic behavior of two collinear interface cracks in magneto-electro-elastic materials,” Eur. J. Mech. A – Solids., vol. 24, pp. 253–262, 2005. DOI:10.1016/j.euromechsol.2004.10.006.
  • L. Ma, L. Z. Wu, Z. G. Zhou, and L. C. Guo, “Fracture analysis of a functionally graded piezoelectric strip,” Compos. Struct., vol. 6, pp. 294–300, 2005. DOI:10.1016/j.compstruct.2004.07.007.
  • L. Ma, J. Li, R. Abdelmoula, and L. Z. Wu, “Mode III crack problem in a functionally graded magneto-electro-elastic strip,” Int. J. Solids Struct., vol. 44, pp. 5518–5537, 2007. DOI:10.1016/j.ijsolstr.2007.01.012.
  • L. C. Guo and N. Noda, “Modeling method for a crack problem of functionally graded materials with arbitrary properties – piecewise-exponential model,” Int. J. Solids Struct., vol. 44, pp. 6768–6790, 2007. DOI:10.1016/j.ijsolstr.2007.03.012.
  • Z. G. Zhou, P. W. Zhang, and L. Z. Wu, “The closed form solution of a Mode-I crack in the piezoelectric/piezomagnetic materials,” Int. J. Solids Struct., vol. 44, pp. 419–435, 2007. DOI:10.1016/j.ijsolstr.2006.04.035.
  • J. E. Dolbow and M. Gosz, “On the computation of mixed-mode stress intensity factors in functionally graded materials,” Int. J. Solids Struct., vol. 39, pp. 2557–2574, 2002. DOI:10.1016/S0020-7683(02)00114-2.
  • J. H. Kim and G. H. Paulino, “The interaction integral for fracture of orthotropic functionally graded materials: Evaluation of stress intensity factors,” Int. J. Solids Struct., vol. 40, pp. 3967–4001, 2003. DOI:10.1016/S0020-7683(03)00176-8.
  • J. H. Kim and G. H. Paulino, “Consistent formulations of the interaction integral method for fracture of functionally graded materials,” J. Appl. Mech., vol. 72, pp. 351–364, 2004. DOI:10.1115/1.1876395.
  • M. C. Walters, G. H. Paulino, and R. H. Dodds, “Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids,” J. Eng. Mech., vol. 132(1), pp. 1–15, 2006. DOI:10.1061/(ASCE)0733-9399(2006)132:1(1).
  • S. H. Song and G. H. Paulino, “Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method,” Int. J. Solids Struct., vol. 43, pp. 4830–4866, 2006. DOI:10.1016/j.ijsolstr.2005.06.102.
  • J. Johnson and J. M. Qu, “An interaction integral method for computing mixed mode stress intensity factors for curved bimaterial interface cracks in non-uniform temperature fields,” Eng. Fract. Mech., vol. 74, pp. 2282–2291, 2007. DOI:10.1016/j.engfracmech.2006.10.008.
  • A. KC and J. H. Kim, “Interaction integrals for thermal fracture of functionally graded materials,” Eng. Fract. Mech., vol. 75, pp. 2542–2565, 2008. DOI:10.1016/j.engfracmech.2007.07.011.
  • F. Galland, A. Gravouil, E. Malvesin, and M. Rochette, “A global model reduction approach for 3D fatigue crack growth with confined plasticity,” Comput. Methods Appl. Mech. Eng., vol. 200, pp. 699–716, 2011. DOI: 10.1016/j.cma.2010.08.018.
  • A. Ayyar and N. Chawla,“Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites,” Acta Mater., vol. 55, pp. 6064–6073, 2007. DOI:10.1016/j.actamat.2007.06.044.
  • H. J. Yu, L. Z. Wu, L. C. Guo, S. Y. Du, and Q. L. He, “Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method,” Int. J. Solids Struct., vol. 46, pp. 3710–3724, 2009. DOI:10.1016/j.ijsolstr.2009.06.019.
  • H. J. Yu, L. Z. Wu, L. C. Guo, Q. L. He, and S. Y. Du, “Interaction integral method for the interfacial fracture problems of two nonhomogeneous materials,” Mech. Mater., vol. 42, pp. 435–450, 2010. DOI:10.1016/j.mechmat.2010.01.001.
  • H. J. Yu, L. Z. Wu, L. C. Guo, H. P. Wu, and S. Y. Du,“An interaction integral method for 3D curved cracks in nonhomogeneous materials with complex interfaces,” Int. J. Solids Struct., vol. 47, pp. 2178–2189, 2010. DOI:10.1016/j.ijsolstr.2010.04.027.
  • T. Belytschko and T. Black,“Elastic crack growth in finite elements with minimal remeshing,” Int. J. Numer. Methods Eng., vol. 45, pp. 601–620, 1999. DOI:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
  • N. Moës, J. Dolbow, and T. Belytschko,“A finite element method for crack growth without remeshing,” Int. J. Numer. Methods Eng., vol. 46, pp. 131–150, 1999. DOI:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  • T. Belytschko, N. Moës, S. Usui, and C. Parimi, “Arbitrary discontinuities in finite elements,” Int. J. Numer. Methods Eng., vol. 50, pp. 993–1013, 2001. DOI:10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M.
  • O. Asi,“An experimental study on the bearing strength behavior of Al2O3 particle filled glass fiber reinforced epoxy composites pinned joints,” Compos. Struct., vol. 92, pp. 354–363, 2010. DOI:10.1016/j.compstruct.2009.08.014.
  • S. Y. Fu, X. Q. Feng, B. Lauke, and Y. W. Mai,“Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites,” Compos. Part B – Eng., vol. 39, pp. 933–961, 2008. DOI:10.1016/j.compositesb.2008.01.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.