156
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of fracture energy for nanocomposites reinforced with carbon nanotubes using numerical and micromechanical methods

, , &
Pages 984-992 | Received 08 Jul 2017, Accepted 06 Nov 2017, Published online: 08 Feb 2018

References

  • R. F. Gibson, “A review of recent research on mechanics of multifunctional composite materials and structures,” Compos. Struct., vol. 92, pp. 2793–2810, 2010. doi: 10.1016/j.compstruct.2010.05.003.
  • S. Laurenzi, R. Pastore, G. Giannini, and M. Marchetti, “Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy,” Compos. Struct., vol. 99, pp. 62–68, 2013. doi: 10.1016/j.compstruct.2012.12.002.
  • S. S. Wicks, R. G. D. Villoria, and B. L. Wardle, “Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes,” Compos. Sci. Tech., vol. 70, no. 1, pp. 20–28, 2010. doi: 10.1016/j.compscitech.2009.09.001.
  • V. Kostopoulos, A. Baltopoulos, P. Karapappas, A. Vavouliotis, and A. Paipetis, “Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes,” Compos. Sci. Tech., vol. 70, no. 4, pp. 553–563, 2010. doi: 10.1016/j.compscitech.2009.11.023.
  • C. S. Grimmer, and C. K. H. Dharan, “Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fiber/polymer composites,” Compos. Sci. Tech., vol. 70, no. 6, pp. 901–908, 2010. doi: 10.1016/j.compscitech.2010.02.001.
  • B. B. Johnsen, A. J. Kinloch, R. D. Mohammed, A. C. Taylor, and S. Sprenger, “Toughening mechanisms of nanoparticle-modified epoxy polymers,” Polym., vol. 48, pp. 530–541, 2007. doi: 10.1016/j.polymer.2006.11.038.
  • Y. L. Liang, and R. A. Pearson, “Toughening mechanisms in epoxy-silica nanocomposites (ESNs),” Polym., vol. 50, pp. 4895–4905, 2009. doi: 10.1016/j.polymer.2009.08.014.
  • C. Zilg, R. Mulhaupt, and J. Finter, “Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates,” Macromol. Chem. Phys., vol. 200, pp. 661–670, 1999 doi: 10.1002/(SICI)1521-3935(19990301)200:3%3c661::AID-MACP661%3e3.0.CO;2-4.
  • O. Becker, Y. B. Cheng, R. J. Varley, and G. P. Simon, “Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume,” Macromolecules, vol. 36, pp. 1616–1625, 2003. doi: 10.1021/ma0213448.
  • J. B. Bai, and A. Allaoui, “Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation,” Compos. Part A, vol. 34, pp. 689–694, 2003. doi: 10.1016/S1359-835X(03)00140-4.
  • M. S. P. Shaffer, and I. A. Kinloch, “Prospects for nanotube and nanofibre composites,” Compos. Sci. Tech., vol. 64, no. 15, pp. 2281–2282, 2004. doi: 10.1016/j.compscitech.2004.01.018.
  • Y. Zhou, F. Pervin, and S. Jeelani, “Effect vapor grown carbon nanofiber on thermalmechanical properties of epoxy,” J. Mater. Sci., vol. 42, pp. 7544–7553, 2007. doi: 10.1007/s10853-007-1618-6.
  • M. K. Yeh, T. H. Hsieh, and N. H. Tai, “Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites,” Mat. Sci. Eng. A. Struct., vol. 483, pp. 289–292, 2008. doi: 10.1016/j.msea.2006.09.138.
  • R. D. Patton, C. U. J. Pittman, L. Wang, and J. R. Hill, “Vapor grown carbon fiber composites with epoxy and poly (phenylene sulfide) matrices,” Compos. Part A, vol. 30, pp. 1081–1091, 1999. doi: 10.1016/S1359-835X(99)00018-4.
  • M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small, vol. 6, no. 2, pp. 179–183, 2010. doi: 10.1002/smll.200901480.
  • B. R. K. Blackman, A. J. Kinloch, J. S. Lee, A. C. Taylor, R. Agarwal, G. Schueneman, and S. Sprenger, “The fracturefatigue behaviour of nano-modified epoxy polymers,” J. Mater. Sci., vol. 42, pp. 7049–7051, 2007. doi: 10.1007/s10853-007-1768-6.
  • C. M. Manjunatha, A. C. Taylor, A. J. Kinloch, and S. Sprenger, “The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite,” Compos. Sci. Tech., vol. 70, pp. 193–199, 2010. doi: 10.1016/j.compscitech.2009.10.012.
  • X. L. Fu, and G. F. Wang, “Effects of surface elasticity on mixed-mode fracture,” Int. J. Appl. Mech., vol. 3, no. 3, pp. 435–446, 2011. doi: 10.1142/S1758825111001068.
  • Y. L. Chen, B. Liu, X. Q. He, Y. Huang, and K. C. Hwang, “Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites,” Compos. Sci. Tech., vol. 70, no. 9, pp. 1360–1367, 2010. doi: 10.1016/j.compscitech.2010.04.015.
  • F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Compos. Sci. Tech., vol. 64, no. 15, pp. 2363–2371, 2004. doi: 10.1016/j.compscitech.2004.04.002.
  • W. Zhang, R. C. Picu, and N. Koratkar, “Suppression of fatigue crack growth in carbon nanotube composites,” Appl. Phys. Lett., vol. 91, pp. 1931091 (3 pp), 2007.
  • W. Zhang, R. C. Picu, and N. Koratkar, “The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites,” Nanotechnology, vol. 19, p. 285709 (5 pp), 2008. doi: 10.1088/0957-4484/19/28/285709.
  • W. Zhang, I. Srivastava, Y. F. Zhu, C. R. Picu, and N. A. Koratkar, “Heterogeneity in epoxy nanocomposites initiates crazing: Significant improvements in fatigue resistance and toughening,” Small, vol. 5, no. 12, pp. 1403–1407, 2009. doi: 10.1002/smll.200801910.
  • M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Enhanced mechanical properties of nanocomposites at low graphene content,” ACS. Nano, vol. 3, pp. 3884–3890, 2009. doi: 10.1021/nn9010472.
  • R. Rafiee, A. Fereidoon, and M. Heidarhaei, “Influence of non-bonded interphase on crack driving force in carbon nanotube reinforced polymer,” Comput. Mater. Sci., vol. 56, pp. 25–28, 2012. doi: 10.1016/j.commatsci.2011.12.025.
  • S. Shadlou, E. Alishahi, and M. R. Ayatollahi, “Fracture behavior of epoxy nanocomposites reinforced with different carbon nano-reinforcements,” Compos. Struct., vol. 95, pp. 577–581, 2013. doi: 10.1016/j.compstruct.2012.08.002.
  • V. Mirjalili and P. Hubert, “Modeling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification,” Compos. Sci. Tech., vol. 70, no. 10, pp. 1537–1543, 2010. doi: 10.1016/j.compscitech.2010.05.016.
  • J. G. Williams, “Particle toughening of polymers by plastic void growth,” Compos. Sci. Tech., vol. 70, no. 6, pp. 885–891, 2010. doi: 10.1016/j.compscitech.2009.12.024.
  • S. K. Douglass, P. W. R. Beaumont, and M. F. Ashby, “A model for the toughness of epoxy-rubber particulate composites,” J. Mater. Sci., vol. 15, pp. 1109–1123, 1980. doi: 10.1007/BF00551799.
  • M. Quaresimin, M. Salviato, and M. Zappalorto, “A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites,” Compos. Sci. Tech., vol. 91, pp. 16–21, 2014. doi: 10.1016/j.compscitech.2013.11.015.
  • T. H. Hsieh, A. J. Kinloch, K. Masania, J. S. Lee, A. C. Taylor, and S. Sprenger, “The toughness of epoxy polymersfibre composites modified with rubber microparticles and silica nanoparticles,” J. Mater. Sci., vol. 45, pp. 1193–1210, 2010. doi: 10.1007/s10853-009-4064-9.
  • I. G. Garcia, M. Paggi, and V. Mantic, “Fiber-size effects on the onset of fiber-matrix debonding under transverse tension: A comparison between cohesive zone and finite fracture mechanics models,” Eng. Frac. Mech., vol. 115, pp. 96–110, 2014. doi: 10.1016/j.engfracmech.2013.10.014.
  • V. C. Li, Y. Wang, and S. Backer, “Effect of inclining angle, bundling and surface treatment on synthetic fiber pull-out from a cement matrix,” Compos., vol. 21, pp. 132–140, 1990. doi: 10.1016/0010-4361(90)90005-H.
  • K. A. Zarasvand and H. Golestanian, “Experimentalnumerical determination of compressive mechanical properties of multiwalled carbon nanotube reinforced polymer,” J. Polym. Eng., vol. 37, no. 4, pp. 421–431, 2016.
  • K. A. Zarasvand and H. Golestanian, “Determination of nonlinear behavior of multi-walled carbon nanotube reinforced polymer: Experimental, numerical, and micromechanical,” Mater. Des., vol. 109, pp. 314–323, 2016. doi: 10.1016/j.matdes.2016.07.071.
  • K. A. Zarasvand and H. Golestanian, “Investigating the effects of number and distribution of GNP layers on graphene reinforced polymer properties: Physical, numerical and micromechanical methods,” Compos. Sci. Tech., vol. 139, pp. 117–126, 2017. doi: 10.1016/j.compscitech.2016.12.024.
  • A. H. Barber, S. R. Cohen, S. Kenig, and H. D. Wagner, “Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix,” Compos. Sci. Tech., vol. 64, pp. 2283–2289, 2004. doi: 10.1016/j.compscitech.2004.01.023.
  • A. H. Barber, S. R. Cohen, and H. D. Wagner, “Measurement of carbon nanotube-polymer interfacial strength,” Appl. Phys. Lett., vol. 82, no. 23, pp. 4140–4142, 2003. doi: 10.1063/1.1579568.
  • J. N. Blanco, E. J. Garcia, and N. R. Guzma, “Limiting mechanisms of mode i interlaminar toughening of composites reinforced with aligned carbon nanotubes,” J. Compos. Mater., vol. 43, no. 8, pp. 825–841, 2009. doi: 10.1177/0021998309102398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.