363
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Fracture behavior of the carbon nanotube/carbon fiber/polymer multiscale composites under bending test – A stochastic finite element method

, &
Pages 1169-1177 | Received 21 Jul 2017, Accepted 31 Oct 2017, Published online: 08 Feb 2018

References

  • M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature, vol. 381, pp. 678–680, 1996. DOI: 10.1038/381678a0.
  • J. P. Lu, “Elastic properties of carbon nanotubes and nanoropes,” Phys. Rev. Lett., vol. 79, pp. 1297–1300, 1997. DOI: 10.1103/PhysRevLett.79.1297.
  • J.-P. Salvetat, J.-M. Bonard, N. Thomson, A. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Appl. Phys. A, vol. 69, pp. 255–260, 1999. DOI: 10.1007/s003390050999.
  • R. Ansari, and S. Rouhi, “Atomistic finite element model for axial buckling of single-walled carbon nanotubes,” Phys E: Low-Dimensional Syst. Nanostructures, vol. 43, pp. 58–69, 2010. DOI: 10.1016/j.physe.2010.06.023.
  • R. Ansari, S. Rouhi, and M. Aryayi, “Nanoscale finite element models for vibrations of single-walled carbon nanotubes: atomistic versus continuum,” Appl. Math. Mech., vol. 34, pp. 1187–1200, 2013. DOI: 10.1007/s10483-013-1738-6.
  • X. Lu, and Z. Hu, “Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling,” Compos. Part B: Eng., vol. 43, pp. 1902–1913, 2012. DOI: 10.1016/j.compositesb.2012.02.002.
  • Y. Han, and J. Elliott, “Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites,” Comput. Mater. Sci., vol. 39, pp. 315–323, 2007. DOI: 10.1016/j.commatsci.2006.06.011.
  • S. Rouhi, Y. Alizadeh, and R. Ansari, “On the elastic properties of single-walled carbon nanotubes/poly (ethylene oxide) nanocomposites using molecular dynamics simulations,” J. Mol. Model., vol. 22, pp. 1–11, 2016. DOI: 10.1007/s00894-015-2889-5.
  • S. Rouhi, Y. Alizadeh, R. Ansari, and M. Aryayi, “Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone,” Mod. Phys. Lett. B, vol. 29, no. 26, p. 1550155, 2015. DOI: 10.1142/S0217984915501559.
  • T. Mahrholz, J. Mosch, D. Röstermundt, U. Riedel, L. Herbeck, and M. Sinapius, “Fibre-reinforced nanocomposites for spacecraft structures-manufacturing, characterisation and application, Spacecraft Structures,” Mater. Mech. Test., 2005, 2005.
  • P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, and A. Paipetis, “Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes,” J. Compos. Mater., vol. 43, pp. 977–985, 2009. DOI: 10.1177/0021998308097735.
  • C. Chen, and D. Curliss, “Resin matrix composites: organoclay-aerospace epoxy nanocomposites. Part II,” SAMPE J. (USA), vol. 37, pp. 11–18, 2001.
  • B. P. Rice, C. Chen, L. Cloos, and D. Curliss, “Carbon fiber composites: Organoclay-aerospace epoxy nanocomposites. Part I,” SAMPE J. (USA), vol. 37, pp. 7–9, 2001.
  • F. H. Gojny, M.H. Wichmann, B. Fiedler, W. Bauhofer, and K. Schulte, “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites,” Compos. Part A: Appl. Sci. Manuf., vol. 36, pp. 1525–1535, 2005. DOI: 10.1016/j.compositesa.2005.02.007.
  • M. Silani, S. Ziaei-Rad, H. Talebi, and T. Rabczuk, “A semi-concurrent multiscale approach for modeling damage in nanocomposites,” Theoretical Appl. Fract. Mech., vol. 74, pp. 30–38, 2014. DOI: 10.1016/j.tafmec.2014.06.0091.
  • L. Mishnaevsky Jr., and G. Dai, “Hybrid and hierarchical polymer composites: Computational modelling of structure-properties relationships,” Compos. Struct., vol. 117, pp. 156–168, 2014. DOI: 10.1016/j.compstruct.2014.06.027.
  • N. Subramanian, A. Rai, and A. Chattopadhyay, “Atomistically derived cohesive behavior of interphases in carbon fiber reinforced CNT Nanocomposites,” Carbon, vol. 117, pp. 55–64, 2017. DOI: 10.1016/j.carbon.2017.02.068.
  • M. Eftekhari, S. Hatefi Ardakani, and S. Mohammadi, “An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete,” Theor. Appl. Fract. Mech., vol. 72, pp. 64–75, 2014. DOI: 10.1016/j.tafmec.2014.06.005.
  • R. Maleki Moghadam, S. Saber-Samandari, and S.A. Hosseini, “On the tensile behavior of clay-epoxy nanocomposite considering interphase debonding damage via mixed-mode cohesive zone material,” Compos. Part B: Eng., vol. 89, pp. 303–315, 2016. DOI: 10.1016/j.compositesb.2015.11.043.
  • K. Lin, E. Law, and S. D. Pang, “Effects of interphase regions of particulate-reinforced metal matrix nanocomposites using a discrete dislocation plasticity model,” J. Nanomechanics Micromechanics, vol. 5.3, p. 04014002, 2014.
  • Y. Huang, and A. Kinloch, “Modelling of the toughening mechanisms in rubbermodified epoxy polymers. part ii a quantitative description of the microstructure-fracture property relationships,” J. Mater. Sci., vol. 27, pp. 2763–2769, 1992. DOI: 10.1007/BF00540703.
  • J. Williams, “Particle toughening of polymers by plastic void growth,” Compos. Sci. Technol., vol. 70, pp. 885–891, 2010. DOI: 10.1016/j.compscitech.2009.12.024.
  • M. Quaresimin, M. Salviato, and M. Zappalorto, “A multi-scale and multimechanism approach for the fracture toughness assessment of polymer nanocomposites,” Compos. Sci. Technol., vol. 91, pp. 16–21, 2014. DOI: 10.1016/j.compscitech.2013.11.015.
  • K. M. Hamdia, X. Zhuang, P. He, and T. Rabczuk, “Fracture toughness of polymeric particle nanocomposites: Evaluation of models performance using Bayesian method,” Compos. Sci. Technol., vol. 126, pp. 122–129, 2016. DOI: 10.1016/j.compscitech.2016.02.012.
  • H. Shin, and M. Cho, “Multiscale model to predict fatigue crack propagation behavior of thermoset polymeric nanocomposites,” Compos. Part A: Appl. Sci. Manuf., vol. 99, pp. 23–31, 2017. DOI: 10.1016/j.compositesa.2017.03.026.
  • G. Dai, and L. Mishnaevsky Jr, “Graphene reinforced nanocomposites: 3D simulation of damage and fracture,” Comput. Mater. Sci., vol. 95, pp. 684–692, 2014. DOI: 10.1016/j.commatsci.2014.08.011.
  • J. A. McCammon, B. R. Gelin, and M. Karplus, “Dynamics of folded proteins,” Nature, vol. 267, no. 5612, pp. 585–590, 1977. DOI: 10.1038/267585a0.
  • Warshel A, Levitt M. “Theoretical studies of enzymic reactions – dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme,” J. Mol. Biol., vol. 103, no. 2, pp. 227–249, 1976. DOI: 10.1016/0022-2836(76)90311-9.
  • D. Roccatano, A. Barthel, and M. Zacharias, “Structural flexibility of the nucleosome core particle at atomic resolution studied by molecular dynamics simulation,” Biopolymers, vol. 85, no. 5-6, pp. 407–421, 2007. DOI: 10.1002/bip.20690.
  • R. Brandman, Y. Brandman, and V. S. Pande, “A-site residues move independently from P-site residues in all-atom molecular dynamics simulations of the 70 S bacterial ribosome,”PLoS One, vol. 7, no. 1, p. e29377, 2012. DOI: 10.1371/journal.pone.0029377.
  • “Molecular dynamics simulations: Advances and applications,”
  • M. P. Allen, “Introduction to molecular dynamics simulation,”
  • Jiang, et al., “Molecular dynamics simulations of the effect of the volume fraction on unidirectional polyimide–carbon nanotube nanocomposites,” 2014.
  • Davydov, et al., “Size effects in a silica-polystyrene nanocomposite: molecular dynamics and surface-enhanced continuum approaches,” 2014.
  • Eslami, and Behrouz, “Molecular dynamics simulation of a polyamide-66/carbon nanotube nanocomposite,” 2014.
  • “Molecular dynamics simulation of dispersion and aggregation kinetics of nanorods in polymer nanocomposites,” 2014.
  • Zhang, et al., “Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation,” 2014.
  • Liu, et al., “Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene,” 2015.
  • Lu, et al., “Modeling the interfacial behavior of carbon nanotube fiber/polyethylene composites by molecular dynamics approach,” 2016.
  • Lin, et al., “Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites – a molecular dynamics simulation,” 2017.
  • Salmalian, et al., “Molecular dynamics simulations of the buckling of graphyne and its family,” 2015.
  • Mehran, et al., “Molecular dynamics simulations of the adsorption of polymer chains on graphyne and its family,”
  • Rouhi, et al., “On the interfacial characteristics of polyethylene/single-walled carbon nanotubes using molecular dynamics simulations,” 2014.
  • Rouhi, et al., “Molecular dynamics simulations of the single-walled carbon nanotubes/ poly phenylacetylene) nanocomposites,”
  • Rouhi, “Molecular dynamics simulation of the adsorption of polymer Chains on CNTs, BNNTs and GaNNT,”
  • M. M. Shokrieh, and R. Rafiee, “Stochastic multi-scale modeling of CNT/polymer composites,” Comput. Mater. Sci., vol. 50, no. 2, pp. 437–446, 2010. DOI: 10.1016/j.commatsci.2010.08.036.
  • M. M. S. Dwaikat, C. Spitas, and V. Spitas, “Effect of the stochastic nature of the constituents parameters on the predictability of the elastic properties of fibrous nano-composites,” Compos. Sci. Technol., vol. 72, no. 15, pp. 1882–1891, 2012. DOI: 10.1016/j.compscitech.2012.08.006.
  • M. M. S. Dwaikat, C. Spitas, and V. Spitas, “Predicting nonlinear stress–strain curves of unidirectional fibrous composites in consideration of stick–slip,” Compos. Part B: Eng., vol. 44, no. 1, pp. 501–507, 2013. DOI: 10.1016/j.compositesb.2012.03.019.
  • H. Ghasemi, R. Rafiee, X. Zhuang, J. Muthu, and T. Rabczuk, “Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling,” Comput. Mater. Sci., vol. 85, pp. 295–305, 2014. DOI: 10.1016/j.commatsci.2014.01.020.
  • C. N. He, et al. “Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition,” J. Alloys Compd., vol. 487.1, pp. 258–262, 2009. DOI: 10.1016/j.jallcom.2009.07.099.
  • Bohayra Mortazavi, Julien Bardon, and Said Ahzi. “Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study.” Comput. Mater. Sci., vol. 69, pp. 100–106, 2013. DOI: 10.1016/j.commatsci.2012.11.035.
  • K. Hbaieb, et al. “Modelling stiffness of polymer/clay nanocomposites.” Polymer, vol. 48.3, pp. 901–909, 2007. DOI: 10.1016/j.polymer.2006.11.062.
  • H. W. Wang, et al. “Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept.” Compos. Sci. Tech., vol. 71.7, pp. 980–988, 2011. DOI: 10.1016/j.compscitech.2011.03.003.
  • M. R. Ayatollahi, et al. “Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites.” Polym. Test., vol. 30.5, pp. 548–556, 2011. DOI: 10.1016/j.polymertesting.2011.04.008.
  • Aggeliki Chanteli, and I. Tserpes Konstantinos. “Finite element modeling of carbon nanotube agglomerates in polymers.” Compos. Struct., vol. 132, pp. 1141–1148, 2015. DOI: 10.1016/j.compstruct.2015.07.033.
  • LAMMPS. “Molecular dynamics simulator,” http://lammps.sandia.gov. (Accessed March 1, 2015).
  • S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys., vol. 117, pp. 1–19, 1995. DOI: 10.1006/jcph.1995.1039.
  • D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons,” J. Phys.: Condens. Matter, vol. 14, p. 783, 2002.
  • M. P. Allen, and D. J. Tildesley, Computer simulation of liquids, Oxford University Press, 1989.
  • Jin-Yuan Hsieh, Jian-Ming Lu, Min-Yi Huang, and Chi-Chuan Hwang. “Theoretical variations in the Young's modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study.” Nanotechnology, vol. 17, no. 15, p. 3920, 2006. DOI: 10.1088/0957-4484/17/15/051.
  • Jelena Milisavljevic, Ivan Ćirić, and Marko Mančić. “Tensile Testing for Different Types of Polymers.” In 29th Danubia–Adria Symposium.
  • A. Selmi, C. Friebel, I. Doghri, and H. Hassis. “Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models,” Compos. Sci. Technol., vol. 67, pp. 2071–2084, 2007. DOI: 10.1016/j.compscitech.2006.11.016.
  • https://www.sglgroup.com/cms/international/products/product-groups/cf/short-carbon-fibers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.