221
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Fatigue crack growth analysis of cracked specimens by the coupled finite element-element free Galerkin method

&
Pages 1343-1356 | Received 20 Sep 2017, Accepted 23 Oct 2017, Published online: 08 Feb 2018

References

  • A. Portela, M. Aliabadi, and D. Rooke, “The dual boundary element method: Effective implementation for crack problem,” Int. J. Numer. Methods Eng., vol. 33, pp. 1269–1287, 1991. Doi: 10.1002/nme.1620330611.
  • A. M. Yan and H. Nguyen-Dang, “Multiple-cracked fatigue crack growth by BEM,” Comput. Mech., vol. 16, pp. 273–280, 1995. Doi: 10.1007/BF00350716.
  • X. Yan, “A boundary element modeling of fatigue crack growth in a plane elastic plate,” Mech. Res. Commun., vol. 33, pp. 470–481, 2006. Doi: 10.1016/j.mechrescom.2005.06.006.
  • S. Cheung and A. R. Luxmoore, “A finite element analysis of stable crack growth in an aluminium alloy,” Eng. Fract. Mech., vol. 70, pp. 1153–1169, 2003. Doi: 10.1016/S0013-7944(02)00093-0.
  • M. Pant, I. V. Singh, and B. K. Mishra, “Numerical simulation of thermo-elastic fracture problems using element free Galerkin method,” Int. J. Mech. Sci., vol. 52, pp. 1745–1755, 2010. Doi: 10.1016/j.ijmecsci.2010.09.008.
  • T. Belytschko, Y. Y. Lu, and L. Gu, “Crack propagation by element-free Galerkin methods,” Eng. Fract. Mech., vol. 51, pp. 295–315, 1995. Doi: 10.1016/0013-7944(94)00153-9.
  • M. Duflot and H. Nguyen-Dang, “A meshless method with enriched weight functions for fatigue crack growth,” Int. J. Numer. Methods Eng., vol. 59, pp. 1945–1961, 2004. Doi: 10.1002/nme.948.
  • M. Duflot and H. Nguyen-Dang, “Fatigue crack growth analysis by an enriched meshless method,” J. Comput. Appl. Math., vol. 168, pp. 155–164, 2004. Doi: 10.1016/j.cam.2003.04.006.
  • T. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” Int. J. Numer. Methods Eng., vol. 45, pp. 601–620, 1999. Doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
  • A. Jameel and G. A. Harmain, “Modeling and numerical simulation of fatigue crack growth in cracked specimens containing material discontinuities,” Strength Mater., vol. 48, pp. 294–306, 2016. Doi: 10.1007/s11223-016-9765-0.
  • T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,” Int. J. Numer. Methods Eng., vol. 37, pp. 229–256, 1994. Doi: 10.1002/nme.1620370205.
  • P. Lancaster and K. Salkauskas, “Surfaces generated by moving least square methods,” Math. Comput., vol. 37, pp. 141–158, 1981. Doi: 10.1090/S0025-5718-1981-0616367-1.
  • T. Belytschko, L. Gu, and Y. Y. Lu, “Fracture and crack growth by element-free Galerkin methods,” Modell. Simul. Mater. Sci. En., vol. 2, pp. 519–534, 1994. Doi: 10.1088/0965-0393/2/3A/007.
  • Y. Y. Lu, T. Belytschko, and L. Gu, “A new implementation of the element free Galerkin method,” Comput. Methods Appl. Mech. Eng., vol. 113, pp. 397–414, 1994. Doi: 10.1016/0045-7825(94)90056-6.
  • Y. Krongauz and T. Belytschko, “Enforcement of essential boundary conditions in meshless approximations using finite elements,” Comput. Methods Appl. Mech. Eng., vol. 131, pp. 133–145, 1996. Doi: 10.1016/0045-7825(95)00954-X.
  • Y. X. Mukherjee and S. Mukherjee, “On boundary conditions in the element-free Galerkin method, vol. 19, pp. 264–270, 1997.
  • Y. Xu and S. Saigal, “An element free Galerkin formulation for stable crack growth in an elastic solid,” Comput. Methods Appl. Mech. Eng., vol. 154, pp. 331–343, 1998. Doi: 10.1016/S0045-7825(97)00133-3.
  • G. Y. Li and T. Belytschko, “Element-free Galerkin method for contact problems in metal forming analysis,” Eng. Comput., vol. 18, no. 1, pp. 62–78, 2001. Doi: 10.1108/02644400110365806.
  • G. Yanjin, W. Xin, G. Zhao, and L. Ping, “A nonlinear numerical analysis for metal forming process using the rigid-(visco) plastic element free Galerkin method,” Int. J. Adv. Manuf. Technol., vol. 42, pp. 83–92, 2009. Doi: 10.1007/s00170-008-1585-3.
  • I. V. Singh and P. K. Jain, “Parallel EFG algorithm for heat transfer problems,” Adv. Eng. Software, vol. 36, no. 8, pp. 554–560, 2005. Doi: 10.1016/j.advengsoft.2005.01.009.
  • G. Liu, T. T. Nguyen, and K. Lam, “An edge-based smoothed finite element method (ES–FEM) for static, free and forced vibration analyses of solids,” J. Sound Vib., vol. 320 (45), pp. 1100–1130, 2009. Doi: 10.1016/j.jsv.2008.08.027.
  • W. Xin, Z. Guoqun, W. Weidong, G. Yanjin, and L. Ping, “Adaptive rigid-plastic meshless Galerkin method and its application in analysis of extrusion processes,” Chin. J. Mech. Eng., vol. 20, no. 2, pp. 26–31, 2007. Doi: 10.3901/CJME.2007.02.026.
  • N. Sukumar, B. Moran, T. Black, and T. Belytschko, “An element-free Galerkin method for the three-dimensional fracture mechanics,” Comput. Mech., vol. 20, pp. 170–175, 1997. Doi: 10.1007/s004660050235.
  • R. Brighenti, “Application of the element-free Galerkin meshless method to 3-D fracture mechanics problems,” Eng. Fract. Mech., vol. 72, pp. 2808–2820, 2005. Doi: 10.1016/j.engfracmech.2005.06.002.
  • H. Pathak, A. Singh, and I. V. Singh, “Numerical simulation of bi-material interfacial cracks using EFGM and XFEM,” Int. J. Mech. Mater. Des., vol. 8, pp. 9–36, 2012. Doi: 10.1007/s10999-011-9173-3.
  • X. F. Hu and W. A. Yao, “A new enriched finite element for fatigue crack growth,” Int. J. Fatigue., vol. 48, pp. 247–256, 2013. Doi: 10.1016/j.ijfatigue.2012.11.003.
  • X. F. Hu, et al., “A new cohesive crack tip symplectic analytical singular element involving plastic zone length for fatigue crack growth prediction under variable amplitude cyclic loading,” Eur. J. Mech. A/Solids, vol. 65, pp. 79–90, 2017. Doi: 10.1016/j.euromechsol.2017.03.008.
  • W. A. Yao and X. F. Hu, “A novel singular finite element of mixed-mode crack problems with arbitrary crack tractions,” Mech. Res. Commun., vol. 38, pp. 170–175, 2011. Doi: 10.1016/j.mechrescom.2011.03.009.
  • B. Nayroles, G. Touzot, and P. Villon, “Generalizing the finite element method: Diffuse approximation and diffuse elements,” Comput. Mech., vol. 10, pp. 307–318, 1992. Doi: 10.1007/BF00364252.
  • D. Hegen, “Element-free Galerkin methods in combination with finite element approaches,” Comput. Methods Appl. Mech. Eng., vol. 135, pp. 143–166, 1996. Doi: 10.1016/0045-7825(96)00994-2.
  • H. Karutz, R. Chudoba, and W. B. Kratzig, “Automatic adaptive generation of a coupled finite element/element-free Galerkin discretization,” Finite. Elem. Anal. Des., vol. 38, pp. 1075–1091, 2002. Doi: 10.1016/S0168-874X(02)00052-5.
  • S. Kumar, I. V. Singh, and B. K. Mishra, “A coupled finite element and element-free Galerkin approach for the simulation of stable crack growth in ductile materials,” Theor. Appl. Frac. Mec., vol. 70, pp. 49–58, 2014. Doi: 10.1016/j.tafmec.2014.02.006.
  • A. S. Shedbale, I. V. Singh, and B. K. Mishra, “A coupled FE–EFG approach for modelling crack growth in ductile materials,” Fatigue. Fract. Engng. Mater. Struct., vol. 39, pp. 1204–1225, 2016. Doi: 10.1111/ffe.12423.
  • A. S. Shedbale, I. V. Singh, B. K. Mishra, and K. Sharma, “Ductile failure modeling and simulations using coupled FE–EFG approach,” Int. J. Fract., vol. 203, pp. 183–209, 2017. Doi: 10.1007/s10704-016-0137-3.
  • A. S. Shedbale, I. V. Singh, B. K. Mishra, and K. Sharma, “Evaluation of mechanical properties using spherical ball indentation and coupled finite element–element-free galerkin approach,” Mech. Adv. Mater. Struct., vol. 23, pp. 832–843, 2016. Doi: 10.1080/15376494.2015.1029171.
  • S. Kumar, A. S. Shedbale, I. V. Singh, and B. K. Mishra, “Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM,” Front. Struct. Civ. Eng., vol. 9, no. 4, pp. 420–440, 2015. Doi: 10.1007/s11709-015-0305-y.
  • K. Sharma, I. V. Singh, B. K. Mishra, and A. S. Shedbale, “The effect of inhomogeneities on an edge crack: A numerical study using XFEM,” Int. J. Comput. Meth. Engng. Sci. Mech., vol. 14, no. 6, pp. 505–523, 2013. Doi: 10.1080/15502287.2013.820227.
  • A. Jameel and G. A. Harmain, “Fatigue crack growth in presence of material discontinuities by EFGM,” Int. J. Fatigue., vol. 81, pp. 105–116, 2015. Doi: 10.1016/j.ijfatigue.2015.07.021.
  • G. Ventura, J. X. Xu, and T. Belytschko, “A vector level set method and new disocnintuity approximations for crack growth in EFG,” Int. J. Numer. Methods Eng., vol. 54, pp. 923–944, 2002. Doi: 10.1002/nme.471.
  • I. V. Singh, B. K. Mishra, S. Bhattacharya, and R. U. Patil, “The numerical simulation of fatigue crack growth using extended finite element method,” Int. J. Fatigue., vol. 36, pp. 109–119, 2012. Doi: 10.1016/j.ijfatigue.2011.08.010.
  • T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, “Meshless methods: An overview and recent developments,” Comput. Methods Appl. Mech. Eng., vol. 139, pp. 3–47, 1996. Doi: 10.1016/S0045-7825(96)01078-X.
  • A. Yazid, N. Abdelkader, and H. Abdelmadjid, “A state-of-the-art review of the X-FEM for computational fracture mechanics,” Appl. Math. Modell., vol. 33, pp. 4269–4282, 2009. Doi: 10.1016/j.apm.2009.02.010.
  • A. R. Khoei, S. O. R. Biabanaki, and M. Anahid, “A Lagrangian-extended finite-element method in modeling large-plasticity deformations and contact problems,” Int. J. Mech. Sci., vol. 51, pp. 384–401, 2009. Doi: 10.1016/j.ijmecsci.2009.03.012.
  • N. Moës, M. Cloirec, P. Cartraud, and J. F. Remacle, “A computational approach to handle complex microstructure geometries,” Comp. Meth. Appl. Mech. Eng., vol. 192, pp. 3163–3177, 2003. Doi: 10.1016/S0045-7825(03)00346-3.
  • S. Osher and J. Sethian, “Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations,” J. Comput. Phys., vol. 79, pp. 12–49, 1988. Doi: 10.1016/0021-9991(88)90002-2.
  • M. Stolarska, D. L. Chopp, N. Moes, and T. Belyschko, “Modelling crack growth by level sets in the extended finite element method,” Int. J. Numer. Methods Eng., vol. 51, pp. 943–960, 2001. Doi: 10.1002/nme.201.
  • N. Sukumar, D. L. Chopp, and B. Moran, “Extended finite element method and fast marching method for three-dimensional fatigue crack propagation,” Eng. Fract. Mech., vol. 70, pp. 29–48, 2003. Doi: 10.1016/S0013-7944(02)00032-2.
  • D. L. Chopp and N. Sukumar, “Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method,” Int. J. Eng. Sci., vol. 41, pp. 845–869, 2003. Doi: 10.1016/S0020-7225(02)00322-1.
  • N. Sukumar, D. L. Chopp, E. Béchet, and N. Moës, “Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method,” Int. J. Numer. Methods Eng., vol. 76, pp. 727–748, 2008. Doi: 10.1002/nme.2344.
  • E. E. Gdoutos, Fracture mechanics – an introduction. 2nd ed, Kluwer academic publications, 2005.
  • B. N. Rao and S. Rahman, “An interaction integral method for analysis of cracks in orthotropic functionally graded materials,” Comput. Mech., vol. 32, pp. 40–51, 2003. Doi: 10.1007/s00466-003-0460-1.
  • B. Moran and C. F. Shih, “A general treatment of crack tip contour integrals,” Int. J. Fract., vol. 27, pp. 295–310, 1987. Doi: 10.1007/BF00276359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.