229
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Extended Layerwise/Solid-Element method of composite sandwich plates with damage

, , , &
Pages 1376-1389 | Received 17 Oct 2017, Accepted 17 Nov 2017, Published online: 14 Mar 2018

References

  • H. Hu, S. Belouettar, M. Potier-Ferry, and E. M. Daya, “Review and assessment of various theories for modeling sandwich composites,” Compos. Struct., vol. 84, pp. 282–292, 2008. doi:10.1016/j.compstruct.2007.08.007.
  • A. J. M. Ferreira, G. E. Fasshauer, R. C. Batra, and J. D. Rodrigues, “Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and rbf-ps discretizations with optimal shape parameter,” Compos. Struct., vol. 86, no. 4, pp. 328–343, 2008. doi:10.1016/j.compstruct.2008.07.025.
  • A. J. M. Ferreira, C. M. C. Roque, R. M. N. Jorge, and E. J. Kansa, “Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations,” Eng. Anal. Boundary Elem., vol. 29, no. 12, pp. 1104–1114, 2005. doi:10.1016/j.enganabound.2005.07.004.
  • C. M. C. Roque, A. J. M. Ferreira, and R. M. N. Jorge, “Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions,” Compos. Part-B: Eng., vol. 36, pp. 559–572, 2005. doi:10.1016/j.compositesb.2005.05.003.
  • T. S. Plagianakos and D. A. Saravanos, “High-order layerwise mechanics and finite element for the damped dynamic characteristics of sandwich composite beams,” Int. J. Solids Struct., vol. 41, pp. 6853–6871, 2004. doi:10.1016/j.ijsolstr.2004.05.038.
  • RAS Moreira and J Dias Rodrigues, “A layerwise model for thin soft core sandwich plates,” Comput. Struct., vol. 84, pp. 1256–1263, 2006. doi:10.1016/j.compstruc.2006.01.020.
  • J. L. Mantari, A. S. Oktem, and C. Guedes Soares, “A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates,” Comput. Struct., vol. 94–95, pp. 45–53, 2012. doi:10.1016/j.compstruc.2011.12.003.
  • K. H. Lo, R. M. Christensen, and E. M. Wu., “A high-order theory of plate deformation part 2: laminated plates,” J. Appl. Mech., vol. 44, no. 4, pp. 669–676, 1977. doi:10.1115/1.3424155.
  • T. Kant and K. Swaminathan, “Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory,” Compos. Struct., vol. 53, no. 1, pp. 73–85, 2001. doi:10.1016/S0263-8223(00)00180-X.
  • J. L. Mantari, A. S. Oktem, and C. Soares Guedes, “A new higher order shear deformation theory for sandwich and composite laminated plates,” Compos. Part B: Eng., vol. 43, no. 3, pp. 1489–1499, 2012. doi:10.1016/j.compositesb.2011.07.017.
  • J. E. Chen, W. Zhang, M. Sun, M. H. Yao, and J. Liu, “Free vibration analysis of composite sandwich plates with different truss cores,” Mech. Adv. Mater. Struct., pp. 1–13, 2017. 10.1080/15376494.2017.1308594.
  • Y. B. Cho and R. C. Averill, “First-order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels,” Compos. Struct., vol. 50, no. 1, pp. 1–15, 2000. doi:10.1016/S0263-8223(99)00063-X.
  • K. H. Lee, P. B. Xavier, and C. H. Chew, “Static response of unsymmetric sandwich beams using an improved zig-zag model,” Compos. Part B: Eng., vol. 3, no. 3, pp. 235–248, 1993.
  • R. C. Averill and Y. C. Yip, “Thick beam theory and finite element model with zig-zag sublaminate approximations,” AIAA J., vol. 34, no. 8, pp. 1627–1632, 1996. doi:10.2514/3.13281.
  • U. Icardi, “Applications of zig-zag theories to sandwich beams,” Mech. Adv. Mater. Struct., vol. 10, no. 1, pp. 77–97, 2003. doi:10.1080/15376490306737.
  • A. J. M. Ferreira, “Analysis of composite plates using a layerwise theory and multiquadrics discretization,” Mech. Adv. Mater. Struct., vol. 12, no. 2, pp. 99–112, 2005. doi:10.1080/15376490490493952.
  • Chien H. Thai, A. J. M. Ferreira, E. Carrera, and H. Nguyen-Xuan, “Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory,” Compos. Struct., vol. 104, no. 5, pp. 196–214, 2013. doi:10.1016/j.compstruct.2013.04.002.
  • D. A. Maturi, A. J. M. Ferreira, A. M. Zenkour, and D. S. Mashat, “Analysis of sandwich plates with a new layerwise formulation,” Compos. Part B: Eng., vol. 56, no. 1, pp. 484–489, 2014. doi:10.1016/j.compositesb.2013.08.086.
  • J. L. Mantari, A. S. Oktem, and C. Guedes Soares, “A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates,” Comput. Struct., vol. s94–95, no. 3, pp. 45–53, 2012. doi:10.1016/j.compstruc.2011.12.003.
  • J. L. Mantari and C. Guedes Soares, “Generalized layerwise hsdt and finite element formulation for symmetric laminated and sandwich composite plates,” Compos. Struct., vol. 105, no. 8, pp. 319–331, 2013. doi:10.1016/j.compstruct.2013.04.042.
  • P. Phung-Van, T. Nguyen-Thoi, H. Dang-Trung, and N. Nguyen-Minh, “A cell-based smoothed discrete shear gap method (cs-fem-dsg3) using layerwise theory based on the c0-hsdt for analyses of composite plates,” Compos. Struct., vol. 108, no. 1, pp. 181–190, 2014.
  • M. Somers, T. Weller, and H. Abramovich, “Buckling and postbuckling behavior of delaminated sandwich beams,” Compos. Struct., vol. 21, no. 4, pp. 211–232, 1992. doi:10.1016/0263-8223(92)90050-M.
  • J. S. Hu and C. Hwu, “Free vibration of delaminated composite sandwich beams,” Aiaa J., vol. 33, no. 33, pp. 1911–1918, 1995. doi:10.2514/3.12745.
  • Q. X. Zheng, L. I. Zhengneng, and W. U. Di., “Damage analysis of honeycomb core composite sandwich plate subjected low velocity impact,” J. Reinf. Plast. Compos., vol. 19, no. 1, pp. 58–68, 2000. doi:10.1177/073168440001900104.
  • G. Labeas and E. Ptochos, “Investigation of sandwich structures with innovative cellular metallic cores under low velocity impact loading,” Plast. Rubber Compos., vol. 42, no. 5, pp. 194–202, 2013. doi:10.1179/1743289811Y.0000000056.
  • T. Zhang, Y. Yan, J. Li, and H. Luo, “Low-velocity impact of honeycomb sandwich composite plates,” J. Reinf. Plast. Compos., vol. 35, no. 1, pp. 8–32, 2015. doi:10.1177/0731684415612573.
  • Z. Li and M. J. Crocker, “Effects of thickness and delamination on the damping in honeycomb foam sandwich beams,” J. Sound Vib., vol. 294, no. 3, pp. 473–485, 2006. doi:10.1016/j.jsv.2005.11.024.
  • G. Zhou, M. Hill, J. Loughlan, and N. Hookham, “Damage characteristics of composite honeycomb sandwich panels in bending under quasi-static loading,” J. Sandwich Struct. Mater., vol. 8, no. 8, pp. 55–90, 2006. doi:10.1177/1099636206056888.
  • G. Zhou and M. D. Hill, “Impact damage and energy-absorbing characteristics and residual in-plane compressive strength of honeycomb sandwich panels,” J. Sandwich Struct. Mater., vol. 11, no. 4, pp. 329–356, 2009. doi:10.1177/1099636209105704.
  • E. J. Herup and A. N. Palazotto, “Low-velocity impact damage initiation in graphite/epoxy/nomex honeycomb-sandwich plates,” Compos. Sci. Technol., vol. 3, no. 12, pp. 1581–1598, 1998. doi:10.1016/S0266-3538(97)00089-4.
  • M. Mcelroy, F. Leone, J. Ratcliffe, M. Czabaj, and F. G. Yuan, “Simulation of delamination-migration and core crushing in a cfrp sandwich structure,” Compos. Part A: Appl. Sci. Manuf., vol. 79, pp. 192–202, 2015. doi:10.1016/j.compositesa.2015.08.026.
  • J. Y. Liu, et al, “Experimental study on the low velocity impact responses of all-composite pyramidal truss core sandwich panel after high temperature exposure,” Compos. Struct., vol. 116, no. 1, pp. 670–681, 2014. et al. doi:10.1016/j.compstruct.2014.06.005.
  • G. Q. Zhang, B. Wang, J. Ma, L. Xiong, and L. Z. Wu, “Response of sandwich structures with pyramidal truss cores under the compression and impact loading,” Compos. Struct., vol. 100, no. 5, pp. 451–463, 2013. doi:10.1016/j.compstruct.2013.01.012.
  • L. Jia, L. Z. Wu, M. Li, J. Xiong, and B. Wang, “Effects of local damage on vibration characteristics of composite pyramidal truss core sandwich structure,” Compos. Part B: Eng., vol. 62, no. 62, pp. 73–87, 2014.
  • W. Yuan, H. W. Song, L. L. Lu, and C. G. Huang, “Effect of local damages on the buckling behavior of pyramidal truss core sandwich panels,” Compos. Struct., vol. 149, pp. 271–278, 2016. doi:10.1016/j.compstruct.2016.04.031.
  • D. H. Li, Y. Liu, and X. Zhang, “A layerwise/solid-element method of the linear static and free vibration analysis for the composite sandwich plates,” Compos. Part B: Eng., vol. 52, no. 52, pp. 187–198, 2013. doi:10.1016/j.compositesb.2013.04.031.
  • D. H Li, Y. Liu, and X. Zhang, “Linear statics and free vibration sensitivity analysis of the composite sandwich plates based on a layerwise/solid-element method,” Compos. Struct., vol. 106, no. 12, pp. 175–200, 2013. doi:10.1016/j.compstruct.2013.05.056.
  • D. H. Li, Y. Liu, and X. Zhang, “An extended layerwise method for composite laminated beams with multiple delaminations and matrix cracks,” Int. J. Numer. Methods Eng., vol. 101, no. 6, pp. 407–434, 2015. doi:10.1002/nme.4803.
  • D. H. Li, “Extended layerwise method of laminated composite shells,” Compos. Struct., vol. 136, no. 3, pp. 313–344, 2016. doi:10.1016/j.compstruct.2015.08.141.
  • D. H. Li, “Extended layerwise method of laminated composite shells,” Compos. Struct., vol. 136, pp. 313–344, 2016. doi:10.1016/j.compstruct.2015.08.141.
  • E. Carrera, “Multilayered shell theories accounting for layerwise mixed description, part 2: Numerical evaluations,” AIAA J., vol. 37, no. 9, pp. 1117–1124, 1999. doi:10.2514/2.822.
  • E. Carrera, “Multilayered shell theories accounting for layerwise mixed description, part 1: Governing equations,” AIAA J., vol. 37, no. 9, pp. 1107–1116, 2012. doi:10.2514/2.821.
  • E. Carrera, “Evaluation of layerwise mixed theories for laminated plates analysis,” AIAA J., vol. 36, no. 36, pp. 830–839, 1998. doi:10.2514/2.444.
  • E. Carrera, “Layer-wise mixed models for accurate vibrations analysis of multilayered plates,” J. Appl. Mech., vol. 65, no. 4, pp. 820–828, 1998. doi:10.1115/1.2791917.
  • E. Carrera, “Mixed layer-wise models for multilayered plates analysis,” Compos. Struct., vol. 43, no. 1, pp. 57–70, 1998. doi:10.1016/S0263-8223(98)00097-X.
  • E. Carrera, “Theories and finite elements for multilayered, anisotropic, composite plates and shells,” Arch. Comput. Methods Eng., vol. 9, no. 2, pp. 87–140, 2002. doi:10.1007/BF02736649.
  • E. Carrera, S. Brischetto, and P. Nali, Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis. John Wiley & Sons; 2011. volume.
  • G. Giunta, S Belouettar, and E. Carrera, “Analysis of fgm beams by means of classical and advanced theories,” Mech. Adv. Mater. Struct., vol. 17, no. 8, pp. 622–635, 2010. doi:10.1080/15376494.2010.518930.
  • E. Carrera, S. Brischetto, M. Cinefra, and M. Soave, “Refined and advanced models for multilayered plates and shells embedding functionally graded material layers,” Mech. Adv. Mater. Struct., vol. 17, no. 8, pp. 603–621, 2010. doi:10.1080/15376494.2010.517730.
  • E. Carrera, S. Brischetto, and P. Nali, “Variational statements and computational models for multifield problems and multilayered structures,” Mech. Adv. Mater. Struct., vol. 15, no. 3–4, pp. 182–198, 2008. doi:10.1080/15376490801907657.
  • E. Carrera, L. Demasi, and M. Manganello, “Assessment of plate elements on bending and vibrations of composite structures,” Mech. Adv. Mater. Struct., vol. 9, no. 4, pp. 333–357, 2002. doi:10.1080/15376490290096982.
  • J. N. Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC press; 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.