122
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Lateral vibrations of a microrotating shaft–disk system subjected to an axial load based on the modified strain gradient theory

ORCID Icon
Pages 1690-1699 | Received 27 Nov 2017, Accepted 17 Feb 2018, Published online: 07 Mar 2018

References

  • B. S. Jeon, K. J. Park, S. Jin Song, Y. C. Joo, and K. D. Min, “Design, fabrication, and testing of a MEMS microturbine,” J. Mech. Sci. Technol., vol. 19, no. 2, pp. 682–691, 2005. DOI: 10.1007/BF02916190.
  • S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators–a review,” Appl. Energy, vol. 88, no. 1, pp. 1–16, 2011. DOI: 10.1016/j.apenergy.2010.07.010.
  • A. Iizuka, M. Takato, M. Kaneko, T. Nishi, K. Saito, and F. Uchikoba, “Millimeter scale MEMS air turbine generator by winding wire and multilayer magnetic ceramic circuit,” Mod. Mech. Eng., vol. 2, no. 2, pp. 41–46, 2012.
  • Ö. Turhan and G. Bulut, “Linearly coupled shaft-torsional and blade-bending vibrations in multi-stage rotor-blade systems,” J. Sound Vibration, vol. 296, no. 1, pp. 292–318, 2006. DOI: 10.1016/j.jsv.2006.03.010.
  • H. M. Khanlo, M. Ghayour, and S. Ziaei-Rad, “Disk Position Nonlinearity Effects on the Chaotic Behavior of Rotating Flexible Shaft-Disk Systems,” J. Mech., vol. 28, no. 03, pp. 513–522, 2012. DOI: 10.1017/jmech.2012.61.
  • N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, “Strain gradient plasticity: theory and experiment,” Acta Metall. Mater., vol. 42, no. 2, pp. 475–487, 1994. DOI: 10.1016/0956-7151(94)90502-9.
  • D. C. Lam and A. C. Chong, “Indentation model and strain gradient plasticity law for glassy polymers,” J. Mater. Res., vol. 14, no. 09, pp. 3784–3788, 1999. DOI: 10.1557/JMR.1999.0512.
  • D. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Ration. Mech. Anal., vol. 11, no. 1, pp. 415–448, 1962. DOI: 10.1007/BF00253946.
  • A. C. Eringen, “Nonlocal polar elastic continua,” Int. J. Eng. Sci., vol. 10, no. 1, pp. 1–16, 1972. DOI: 10.1016/0020-7225(72)90070-5.
  • F. A. C. M. Yang, A. C. M. Chong, D. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • M. E. Gurtin and A. I. Murdoch, “Surface stress in solids,” Int. J. Solids Struct., vol. 14, no. 6, pp. 431–440, 1978. DOI: 10.1016/0020-7683(78)90008-2.
  • R. D. Mindlin and N. N. Eshel, “On first strain-gradient theories in linear elasticity,” Int. J. Solids Struct., vol. 4, no. 1, pp. 109–124, 1968. DOI: 10.1016/0020-7683(68)90036-X.
  • N. A. Fleck and J. W. Hutchinson, “A phenomenological theory for strain gradient effects in plasticity,” J. Mech. Phys. Solids, vol. 41, no. 12, pp. 1825–1857, 1993. DOI: 10.1016/0022-5096(93)90072-N.
  • M. H. Kahrobaiyan, M. Asghari, M. Rahaeifard, and M. T. Ahmadian, “A nonlinear strain gradient beam formulation,” Int. J. Eng. Sci., vol. 49, no. 11, pp. 1256–1267, 2011. DOI: 10.1016/j.ijengsci.2011.01.006.
  • H. Farokhi, M. H. Ghayesh, and M. Amabili, “Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory,” Int. J. Eng. Sci., vol. 68, pp. 11–23, 2013. DOI: 10.1016/j.ijengsci.2013.03.001.
  • M. H. Ghayesh, H. Farokhi, and M. Amabili, “Nonlinear dynamics of a microscale beam based on the modified couple stress theory,” Compos. Part B: Eng., vol. 50, pp. 318–324, 2013. DOI: 10.1016/j.compositesb.2013.02.021.
  • M. H. Ghayesh, H. Farokhi, and M. Amabili, “In-plane and out-of-plane motion characteristics of microbeams with modal interactions,” Compos. Part B: Eng., vol. 60, pp. 423–439, 2014. DOI: 10.1016/j.compositesb.2013.12.074.
  • M. H. Ghayesh, M. Amabili, and H. Farokhi, “Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory,” Int. J. Eng. Sci., vol. 63, pp. 52–60, 2013. DOI: 10.1016/j.ijengsci.2012.12.001.
  • M. H. Ghayesh, H. Farokhi, and A. Gholipour, “Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams,” Int. J. Mech. Sci., vol. 122, pp. 370–383, 2017. DOI: 10.1016/j.ijmecsci.2017.01.001.
  • H. Farokhi and M. H. Ghayesh, “Size-dependent parametric dynamics of imperfect microbeams,” Int. J. Eng. Sci., vol. 99, pp. 39–55, 2016. DOI: 10.1016/j.ijengsci.2015.10.014.
  • M. H. Ghayesh and H. Farokhi, “Chaotic motion of a parametrically excited microbeam,” Int. J. Eng. Sci., vol. 96, pp. 34–45, 2015. DOI: 10.1016/j.ijengsci.2015.07.004.
  • M. H. Ghayesh, H. Farokhi, and S. Hussain, “Viscoelastically coupled size-dependent dynamics of microbeams,” Int. J. Eng. Sci., vol. 109, pp. 243–255, 2016. DOI: 10.1016/j.ijengsci.2016.09.004.
  • H. Farokhi, M. H. Ghayesh, and S. Hussain, “Large-amplitude dynamical behaviour of microcantilevers,” Int. J. Eng. Sci., vol. 106, pp. 29–41, 2016. DOI: 10.1016/j.ijengsci.2016.03.002.
  • M. H. Ghayesh, M. Amabili, and H. Farokhi, “Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams,” Int. J. Eng. Sci., vol. 71, pp. 1–14, 2013. DOI: 10.1016/j.ijengsci.2013.04.003.
  • H. Farokhi and M. H. Ghayesh, “Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams,” Int. J. Eng. Sci., vol. 91, pp. 12–33, 2015. DOI: 10.1016/j.ijengsci.2015.02.005.
  • H. Farokhi and M. H. Ghayesh, “Supercritical nonlinear parametric dynamics of Timoshenko microbeams,” Commun. Nonlinear Sci. Numer. Simulation, vol. 59, pp. 592–605, 2018. DOI: 10.1016/j.cnsns.2017.11.033.
  • H. Farokhi, M. H. Ghayesh, A. Gholipour and S. Hussain, “Motion characteristics of bilayered extensible Timoshenko microbeams,” Int. J. Eng. Sci., vol. 112, pp. 1–17, 2017. DOI: 10.1016/j.ijengsci.2016.09.007.
  • H. Farokhi and M. H. Ghayesh, “Nonlinear resonant response of imperfect extensible Timoshenko microbeams,” Int. J. Mech. Mater. Des., vol. 13, no. 1, pp. 43–55, 2017. DOI: 10.1007/s10999-015-9316-z.
  • R. Ansari, R. Gholami, M. F. Shojaei, V. Mohammadi, and M. A. Darabi, “Coupled longitudinal-transverse-rotational free vibration of post-buckled functionally graded first-order shear deformable micro-and nano-beams based on the Mindlin's strain gradient theory,” Appl. Math. Modell., vol. 40, no. 23, pp. 9872–9891, 2016. DOI: 10.1016/j.apm.2016.06.042.
  • M. H. Ghayesh, H. Farokhi, and A. Gholipour, “Oscillations of functionally graded microbeams,” Int. J. Eng. Sci., vol. 110, pp. 35–53, 2017. DOI: 10.1016/j.ijengsci.2016.09.011.
  • A. Gholipour, H. Farokhi, and M. H. Ghayesh, “In-plane and out-of-plane nonlinear size-dependent dynamics of microplates,” Nonlinear Dyn., vol. 79, no. 3, pp. 1771–1785, 2015. DOI: 10.1007/s11071-014-1773-7.
  • M. H. Ghayesh and H. Farokhi, “Nonlinear dynamics of microplates,” Int. J. Eng. Sci., vol. 86, pp. 60–73, 2015. DOI: 10.1016/j.ijengsci.2014.10.004.
  • H. Farokhi and M. H. Ghayesh, “Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory,” Int. J. Mech. Sci., vol. 90, pp. 133–144, 2015. DOI: 10.1016/j.ijmecsci.2014.11.002.
  • H. Farokhi and M. H. Ghayesh, “Nonlinear mechanics of electrically actuated microplates,” Int. J. Eng. Sci., vol. 123, pp. 197–213, 2018. DOI: 10.1016/j.ijengsci.2017.08.017.
  • M. Mirsalehi, M. Azhari, and H. Amoushahi, “Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method,” Eur. J. Mech. -A/Solids, vol. 61, pp. 1–13, 2016. DOI: 10.1016/j.euromechsol.2016.08.008.
  • M. H. Ghayesh, H. Farokhi, A. Gholipour, and M. Tavallaeinejad, “Nonlinear oscillations of functionally graded microplates,” Int. J. Eng. Sci., vol. 122, pp. 56–72, 2018. DOI: 10.1016/j.ijengsci.2017.03.014.
  • A. M. Dehrouyeh-Semnani, M. BehboodiJouybari, and M. Dehrouyeh, “On size-dependent lead-lag vibration of rotating microcantilevers,” Int. J. Eng. Sci., vol. 101, pp. 50–63, 2016. DOI: 10.1016/j.ijengsci.2015.12.009.
  • M. H. Ghayesh, H. Farokhi, and G. Alici, “Size-dependent performance of microgyroscopes,” Int. J. Eng. Sci., vol. 100, pp. 99–111, 2016. DOI: 10.1016/j.ijengsci.2015.11.003.
  • R. A. M. I.N. Vatankhah and M. H. Kahrobaiyan, “Investigation of size-dependency in free-vibration of micro-resonators based on the strain gradient theory,” Latin Am. J. Solids Struct., vol. 13, no. 3, pp. 498–515, 2016. DOI: 10.1590/1679-78252430.
  • M. H. Ghayesh, H. Farokhi, and M. Amabili, “Nonlinear behaviour of electrically actuated MEMS resonators,” Int. J. Eng. Sci., vol. 71, pp. 137–155, 2013. DOI: 10.1016/j.ijengsci.2013.05.006.
  • R. Gholami, A. Darvizeh, R. Ansari, and F. Sadeghi, “Vibration and buckling of first-order shear deformable circular cylindrical micro-/nano-shells based on Mindlin's strain gradient elasticity theory,” Eur. J. Mech. -A/Solids, vol. 58, pp. 76–88, 2016. DOI: 10.1016/j.euromechsol.2016.01.014.
  • W. M. Zhang and G. Meng, “Stability, bifurcation and chaos of a high-speed rub-impact rotor system in MEMS,” Sens. Actuators A: Phys., vol. 127, no. 1, pp. 163–178, 2006. DOI: 10.1016/j.sna.2005.11.014.
  • W. M. Zhang, G. Meng, D. Chen, J. B. Zhou, and J. Y. Chen, “Nonlinear dynamics of a rub-impact micro-rotor system with scale-dependent friction model,” J. Sound Vibration, vol. 309, no. 3, pp. 756–777, 2008. DOI: 10.1016/j.jsv.2007.07.077.
  • G. Meng, W. M. Zhang, H. Huang, H. G. Li, and D. I. Chen, “Micro-rotor dynamics for micro-electro-mechanical systems (MEMS),” Chaos, Solitons Fractals, vol. 40, no. 2, pp. 538–562, 2009. DOI: 10.1016/j.chaos.2007.08.003.
  • M. Hashemi and M. Asghari, “Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines,” Acta Mech., vol. 226, no. 9, pp. 3085–3096, 2015. DOI: 10.1007/s00707-015-1348-9.
  • M. Asghari and M. Hashemi, “Flexural vibration characteristics of micro-rotors based on the strain gradient theory,” Int. J. Appl. Mech., vol. 7, no. 05, pp. 1550075, 2015. DOI: 10.1142/S1758825115500751.
  • K. B. Mustapha, Z. W. Zhong and S. B. A. Kashem, “Vibration behavior of gravity-loaded whirling micro-scale shafts influenced by an axial magnetic field,” Int. J. Struct. Stab. Dyn., pp. 1750110, 2017. DOI: 10.1142/S0219455417501103.
  • M. Hashemi and M. Asghari, “Size-dependent vibrational behavior of a Jeffcott model for micro-rotor systems,” J. Mech. Sci. Technol., vol. 30, no. 1, pp. 35–41, 2016. DOI: 10.1007/s12206-015-1204-9.
  • C. Liebold, and W. H. Müller, “Applications of strain gradient theories to the size effect in submicro-structures incl. experimental analysis of elastic material parameters,” Bull. TICMI, vol. 19, no. 1, pp. 45–55, 2015.
  • C. O. Chang and J. W. Cheng, “Non-linear dynamics and instability of a rotating shaft-disk system,” J. Sound Vibration, vol. 160, no. 3, pp. 433–454, 1993. DOI: 10.1006/jsvi.1993.1037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.