144
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A thermodynamic driving force approach for analyzing functional degradation of shape memory alloy components

ORCID Icon &
Pages 1543-1555 | Received 22 Dec 2017, Accepted 31 Jan 2018, Published online: 09 Mar 2018

References

  • D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Proc. Inst. Mech. Eng., G: J. Aero. Eng., vol. 221, no. 4, pp. 535–552, 2007.
  • R. Bogue, “Shape-memory materials: A review of technology and applications,” Assem. Autom., vol. 29, no. 3, pp. 214–219, 2009.
  • L. G. Machado and M. A. Savi, “Medical applications of shape memory alloys,” Bra. J. Med. Biol. Res., vol. 36, no. 6, pp. 683–691, 2003.
  • D. Mantovani, “Shape memory alloys: Properties and biomedical applications,” JOM Metal. Mater. Soc., vol. 52, no. 10, pp. 36–44, 2000.
  • D. Stoeckel, “Shape memory actuators for automotive applications,” Mater. Des., vol. 11, no. 6, pp. 302–307, 1990.
  • N. J. Ganesh, S. Maniprakash, L. Chandrasekaran, S. M. Srinivasan, and A. R. Srinivasa, “Design and development of a sun tracking mechanism using the direct SMA actuation,” J. Mech. Des., vol. 133, pp. 075001, 2011.
  • P. Ghosh, A. Rao, and A. R. Srinivasa, “Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites,” Mater. Des., vol. 44, no. 0, pp. 164–171, 2013.
  • P. Ghosh, A. Rao, and A. R. Srinivasa, “Multifunctional smart material system (msms) using shape memory alloys and shape memory polymers”. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, San Diego, California, 2012.
  • G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, “Structural and functional fatigue of NITI shape memory alloys,” Mater. Sci. Eng. A, vol. 378, no. 1, pp. 24–33, 2004.
  • K. V. Ramaiah, C. N. Saikrishna, V. R. Ranganath, V. Buravalla, and S. K. Bhaumik, “Fracture of thermally activated NITI shape memory alloy wires,” Mater. Sci. Eng. A, vol. 528, no. 16, pp. 5502–5510, 2011.
  • A. Rao, A. R. Srinivasa, and J. N. Reddy, “Design of shape memory alloy (SMA) actuators,” Springer, 2015.
  • N. B. Morgan and C. M. Friend, “A review of shape memory stability in NITI alloys,” Le J. Phys. IV, vol. 11, no. PR8, pp. 318–325, 2001.
  • E. Hornbogen, “Review thermo-mechanical fatigue of shape memory alloys,” J. Mater. Sci., vol. 39, no. 2, pp. 385–399, 2004.
  • S. W. Robertson, A. R. Pelton, and R. O. Ritchie, “Mechanical fatigue and fracture of nitinol,” Int. Mater. Rev., vol. 57, no. 1, pp. 1–37, 2012.
  • H. Tobushi, T. Hachisuka, S. Yamada, and P. H. Lin, “Rotating-bending fatigue of a tini shape-memory alloy wire,” Mech. Mater., vol. 26, no. 1, pp. 35–42, 1997.
  • M. G. de Azevedo Bahia, R. Fonseca Dias, and V. T. L. Buono, “The influence of high amplitude cyclic straining on the behaviour of superelastic niti,” Int. J. Fatigue, vol. 28, no. 9, pp. 1087–1091, 2006.
  • S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu, “Fatigue life of ti–50 at.% ni and ti–40ni–10cu (at.%) shape memory alloy wires,” Mater. Sci. Eng. A, vol. 273, pp. 658–663, 1999.
  • H. Tobushi, Y. Ohashi, T. Hori, and H. Yamamoto, “Cyclic deformation of tini shape-memory alloy helical spring,” Exp. Mech., vol. 32, no. 4, pp. 304–308, 1992.
  • H. Tamura, K. Mitose, and Y. Suzuki, “Fatigue properties of ti-ni shape memory alloy springs,” J. Phys. IV, vol. 5, no. 8, pp. C8–617, 1995.
  • C. Grossmann, J. Frenzel, V. Sampath, T. Depka, A. Oppenkowski, C. Somsen, K. Neuking, W. Theisen, and G. Eggeler, “Processing and property assessment of niti and niticu shape memory actuator springs,” Materwiss. Werkstofftech., vol. 39, no. 8, pp. 499–510, 2008.
  • C. Grossmann, J. Frenzel, V. Sampath, T. Depka, and G. Eggeler, “Elementary transformation and deformation processes and the cyclic stability of niti and niticu shape memory spring actuators,” Metallur. Mater. Trans. A, vol. 40, no. 11, pp. 2530–2544, 2009.
  • S. Miyazaki, “Thermal and stress cycling effects and fatigue properties of ni–ti alloys”. In: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (UK), pp. 394–413, 1990.
  • K. N. Melton and O. Mercier, “Fatigue of niti thermoelastic martensites,” Acta Metallur., vol. 27, no. 1, pp. 137–144, 1979.
  • G. S. Mammano and E. Dragoni, “Functional fatigue of shape memory wires under constant-stress and constant-strain loading conditions,” Proc. Eng., vol. 10, pp. 3692–3707, 2011.
  • G. Kang, Q. Kan, C. Yu, D. Song, and Y. Liu, “Whole-life transformation ratchetting and fatigue of super-elastic niti alloy under uniaxial stress-controlled cyclic loading,” Mater. Sci. Eng. A, vol. 535, pp. 228–234, 2012.
  • T. Ataalla, M. Leary, and A. Subic, “Functional fatigue of shape memory alloys”. In: Sustainable Automotive Technologies, Springer, Berlin, Heidelberg, 2012.
  • G. Scirè Mammano and E. Dragoni, “Functional fatigue of ni-ti shape memory wires under various loading conditions,” Int. J. Fatigue, vol. 69, pp. 71–83, 2014.
  • O. W. Bertacchini, D. C. Lagoudas, F. T. Calkins, and J. H. Mabe, “Thermomechanical cyclic loading and fatigue life characterization of nickel rich niti shape-memory alloy actuators”. In: The 15th International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, San Diego, California, 2008.
  • O. W. Bertacchini, D. C. Lagoudas, and E. Patoor, “Thermomechanical transformation fatigue of tinicu sma actuators under a corrosive environment–part i: Experimental results,” Int. J. Fatigue, vol. 31, no. 10, pp. 1571–1578, 2009.
  • D. C. Lagoudas, D. A. Miller, L. Rong, and P. K. Kumar, “Thermomechanical fatigue of shape memory alloys,” Smart Mater. Struct., vol. 18, no. 8, pp. 085021, 2009.
  • A. M. Figueiredo, P. Modenesi, and V. Buono, “Low-cycle fatigue life of superelastic niti wires,” Int. J. Fatigue, vol. 31, no. 4, pp. 751–758, 2009.
  • A. Runciman, D. Xu, A. R. Pelton, and R. O. Ritchie, “An equivalent strain/coffin–manson approach to multiaxial fatigue and life prediction in superelastic nitinol medical devices,” Biomaterials, vol. 32, no. 22, pp. 4987–4993, 2011.
  • C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and A. Tuissi, “Fatigue of pseudoelastic niti within the stress-induced transformation regime: A modified coffin–manson approach,” Smaet Mater. Struct., vol. 21, no. 11, pp. 112001, 2012.
  • Z. Moumni, A. Van Herpen, and P. Riberty, “Fatigue analysis of shape memory alloys: Energy approach,” Smart Mater. Struct., vol. 14, no. 5, pp. S287, 2005.
  • Z. Moumni, W. Zaki, H. Maitournam, “Cyclic behavior and energy approach to the fatigue of shape memory alloys,” J. Mech. Mater. Struct., vol. 4, no. 2, pp. 395–411, 2009.
  • H. Soul, A. Isalgue, A. Yawny, V. Torra, and F. C. Lovey, “Pseudoelastic fatigue of niti wires: Frequency and size effects on damping capacity,” Smart Mater. Struct., vol. 19, no. 8, pp. 085006, 2010.
  • C. Dunand-Châtellet and Z. Moumni, “Experimental analysis of the fatigue of shape memory alloys through power-law statistics,” Int. J. Fatigue, vol. 36, no. 1, pp. 163–170, 2012.
  • A. L. Gloanec, G. Bilotta, and M. Gerland, “Deformation mechanisms in a tini shape memory alloy during cyclic loading,” Mater. Sci. Eng. A, vol. 564, pp. 351–358, 2013.
  • K. E. Wilkes, P. K. Liaw, and K. E. Wilkes, “The fatigue behavior of shape-memory alloys,” JOM Metals Mater. Soc., vol. 52, no. 10, pp. 45–51, 2000.
  • M. M. Khonsari and M. Amiri, Introduction to Thermodynamics of Mechanical Fatigue. CRC Press, Boca Raton, FL, 2012.
  • M. Naderi, M. Amiri, and M. M. Khonsari, “On the thermodynamic entropy of fatigue fracture,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 466, no. 2114, pp. 423–438, 2010.
  • M. Amiri and M. M. Khonsari, “On the role of entropy generation in processes involving fatigue,” Entropy, vol. 14, no. 1, pp. 24–31, 2011.
  • M. Naderi and M. M. Khonsari, “An experimental approach to low-cycle fatigue damage based on thermodynamic entropy,” Int. J. Solid Struct., vol. 47, no. 6, pp. 875–880, 2010.
  • M. Naderi and M. M. Khonsari, “Thermodynamic analysis of fatigue failure in a composite laminate,” Mech. Mater., vol. 46, pp. 113–122, 2012.
  • M. Amiri and M. M. Khonsari, “Life prediction of metals undergoing fatigue load based on temperature evolution,” Mater. Sci. Eng. A, vol. 527, no. 6, pp. 1555–1559, 2010.
  • G. Fargione, A. Geraci, G. La Rosa, and A. Risitano, “Rapid determination of the fatigue curve by the thermographic method,” Int. J. Fatigue, vol. 24, no. 1, pp. 11–19, 2002.
  • M. Amiri and M. M. Khonsari, “Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load,” Int. J. Fatigue, vol. 32, no. 2, pp. 382–389, 2010.
  • A. Rao, G. Bosak, B. Joshi, J. Keane, L. Nally, A. Peng, S. Perera, A. Waring, and B. Poudel, “A tialcu metallization for ntype cosbx skutterudites with improved performance for high-temperature energy harvesting applications,” J. Elect. Mater., vol. 46, no. 4, pp. 2419–2431, 2017.
  • A. Rao, P. Banjade, G. Bosak, B. Joshi, J. Keane, L. Nally, A. Peng, S. Perera, A. Waring, G. Joshi, and P. Bed, “A quick and efficient measurement technique for performance evaluation of thermoelectric materials,” Measur. Sci. Technol., vol. 27, no. 10, pp. 105008, 2016.
  • S. Doraiswamy, A. Rao, and A. R. Srinivasa, “Combining thermodynamic principles with preisach models for superelastic shape memory alloy wires,” Smart Mater. Struct., vol. 20, no. 8, pp. 085032, 2011.
  • A. Rao and A. R. Srinivasa, “A two species thermodynamic preisach model for the torsional response of shape memory alloy wires and springs under superelastic conditions,” Int. J. Solid Struct., vol. 50, no. 6, pp. 887–898, 2013.
  • A. Rao, A. Ruimi, and A. R. Srinivasa, “Internal loops in superelastic shape memory alloy wires under torsion–experiments and simulations/predictions,” Int. J. Solid Struct., vol. 51, no. 25, pp. 4554–4571, 2014.
  • A. Rao, Structural Thermomechanical Models for Shape Memory Alloy Components. PhD thesis, ProQuest LLC, Ann Arbor, Michigan, 2014.
  • K. R. Rajagopal and A. R. Srinivasa, “On the thermomechanics of shape memory wires,” Z. Angew. Math. Phys. (ZAMP), vol. 50, no. 3, pp. 459–496, 1999.
  • A. Rao, “Modeling bending response of shape memory alloy wires/beams under superelastic conditions – a two species thermodynamic preisach approach,” Int. J. Struct. Change. Solid., vol. 5, pp. 1–26, 2013.
  • A. Rao and A. R. Srinivasa, “A three-species model for simulating torsional response of shape memory alloy components using thermodynamic principles and discrete preisach models,” Math. Mech. Solid., vol. 20, no. 3, pp. 345–372, 2015.
  • S. Doraiswamy, “Discrete Preisach Model for the Superelastic Response of Shape Memory Alloys”. Master’s thesis, Texas A&M University, College Station, Texas, 2010.
  • S. Doraiswamy, A. Rao, and A. R. Srinivasa, “A two species thermodynamic preisach approach for simulating superelastic responses of shape memory alloys under tension and bending loading conditions”. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, San Diego, California, 2013.
  • O. Doaré, A. Sbarra, C. Touzé, M. O. Moussa, and Z. Moumni, “Experimental analysis of the quasi-static and dynamic torsional behaviour of shape memory alloys,” Int. J. Solid Struct., vol. 49, no. 1, pp. 32–42, 2012.
  • N. Springs, “Images SI Inc”. Website. Available from http://www.imagesco.com/nitinol/expansion-spring.html.
  • R. G. Loewy, “Recent developments in smart structures with aeronautical applications,” Smart Mater. Struct., vol. 6, no. 5, pp. R11, 1997.
  • T. Duerig, A. Pelton, and D. Stöckel, “An overview of nitinol medical applications,” Mater. Sci. Eng. A, vols. 273–275, pp. 149–160, 1999.
  • A. I. Razov and A. G. Cherniavsky, “Applications of shape memory alloys in space engineering: Past and future,” ESA SP, vol. 438, pp. 141–146, 1999.
  • I. Chopra, “Status of application of smart structures technology to rotorcraft systems,” J. Am. Helico. Soci., vol. 45, no. 4, pp. 228–252, 2000.
  • N. B. Morgan, “Medical shape memory alloy applications: The market and its products,” Mater. Sci. Eng. A, vol. 378, no. 1, pp. 16–23, 2004.
  • A. Bellini, M. Colli, and E. Dragoni, “Mechatronic design of a shape memory alloy actuator for automotive tumble flaps: A case study,” IEEE Trans. Indus. Electron., vol. 56, no. 7, pp. 2644–2656, 2009.
  • A. Heckmann and E. Hornbogen, “Microstructure and pseudo-elastic low-cycle high amplitude fatigue of niti,” J. Phys. IV (Proc.), vol. 112, pp. 831–834, 2003.
  • R. DesRoches and B. Smith, “Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations,” J. Earthqu. Eng., vol. 8, no. 3, pp. 415–429, 2004.
  • S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, I. Bar-On, Y. Suzuki, and A. Masuda, “An overview of vibration and seismic applications of niti shape memory alloy,” Smart Mater. Struct., vol. 11, no. 2, pp. 218, 2002.
  • G. Song, N. Ma, and H. N. Li, “Applications of shape memory alloys in civil structures,” Eng. Struct., vol. 28, no. 9, pp. 1266–1274, 2006.
  • M. Speicher, D. E. Hodgson, R. DesRoches, and R. T. Leon, “Shape memory alloy tension/compression device for seismic retrofit of buildings,” J. Mater. Eng. Perform., vol. 18, no. 5, pp. 746–753, 2009.
  • K. Williams, G. Chiu, and R. Bernhard, “Adaptive-passive absorbers using shape-memory alloys,” J. Sound Vibra., vol. 249, no. 5, pp. 835–848, 2002.
  • J. C. Wilson and M. J. Wesolowsky, “Shape memory alloys for seismic response modification: A state-of-the-art review,” Earthqu. Spect., vol. 21, no. 2, pp. 569–601, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.