530
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Numerical static and dynamic analyses of improved equivalent models for corrugated sandwich structures

, , , , &
Pages 1556-1567 | Received 19 Jan 2018, Accepted 25 Jan 2018, Published online: 09 Mar 2018

References

  • A. G. Evans, J. W. Hutchinson, and M. F. Ashby, “Multifunctionality of cellular metal systems,” Pro. Mater. Sci., vol. 43, no. 3, pp. 171–221, 1998. DOI: 10.1016/S0079-6425(98)00004-8.
  • L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties. Cambridge University Press, UK, 1999.
  • A. Vaziri, Z. Xue, and J. W. Hutchinson, “Metal sandwich plates with polymer foam-filled cores,” J. Mech. Mater. Struct., vol. 1, no. 1, pp. 97–127, 2006. DOI: 10.2140/jomms.2006.1.97.
  • V. Rizov, A. Shipsha, and D. Zenkert, “Indentation study of foam core sandwich composite panels,” Compos. Struct., vol. 69, no. 1, pp. 95–102, 2005. DOI: 10.1016/j.compstruct.2004.05.013.
  • V. N. Burlayenko and T. Sadowski, “Analysis of structural performance of sandwich plates with foam-filled aluminum hexagonal honeycomb core,” Comp. Mater. Sci., vol. 45, no. 3, pp. 658–662, 2009. DOI: 10.1016/j.commatsci.2008.08.018.
  • L. Guj and A. Sestieri, “Dynamic modeling of honeycomb sandwich panel,” Arch. Appl. Mech., vol. 77, no. 11, pp. 779–793, 2007. DOI: 10.1007/s00419-007-0121-5.
  • G. Kress and M. Winkler, “Corrugated laminate homogenization model,” Compos. Struct., vol. 92, no. 3, pp. 795–810, 2010. DOI: 10.1016/j.compstruct.2009.08.027.
  • F. W. Zok et al., “Design of metallic textile core sandwich panels,” Int. J. Solids Struct., vol. 40, no. 21, pp. 5707–5722, 2003. DOI: 10.1016/S0020-7683(03)00375-5.
  • H. N. G. Wadley, N. A. Fleck, and A. G. Evans, “Fabrication and structural performance of periodic cellular metal sandwich structures,” Compos. Sci. Technol., vol. 63, no. 16, pp. 2331–2343, 2003. DOI: 10.1016/S0266-3538(03)00266-5.
  • T. S. Lok and Q. H. Cheng, “Free and forced vibration of simply supported, orthotropic sandwich panel,” Comput. Struct., vol. 79, no. 3, pp. 301–312, 2001. DOI: 10.1016/S0045-7949(00)00136-X.
  • Z. Guo, C. Liu, and F. Li, “Vibration analysis of sandwich plates with lattice truss core,” Mech. Adv. Mater. Struct. (In press). DOI: 10.1080/15376494.2017.1400616.
  • I. Dayyani, S. Ziaei-Rad, and H. Salehi, “Numerical and experimental investigations on mechanical behavior of composite corrugated core,” Appl. Compos. Mater., vol. 19, no. 3–4, pp. 705–721, 2012. DOI: 10.1007/s10443-011-9238-3.
  • S. Barbarino et al., “A review of morphing aircraft,” J. Intel. Mat. Syst. Str., vol. 22, no. 9, pp. 823–877, 2011. DOI: 10.1177/1045389X11414084.
  • T. Yokozeki et al., “Mechanical properties of corrugated composites for candidate materials of flexible wing structures,” Compos. Part A-Appl. S., vol. 37, no. 10, pp. 1578–1586, 2006. DOI: 10.1016/j.compositesa.2005.10.015.
  • D. Zenkert et al., “Damage tolerance assessment of composite sandwich panels with localised damage,” Compos. Sci. Technol., vol. 65, no. 15, pp. 2597–2611, 2005. DOI: 10.1016/j.compscitech.2005.05.026.
  • A. Petras, Design of Sandwich Structures. University of Cambridge, UK, 1999.
  • M. Kintscher et al., “Stiffness and failure behaviour of folded sandwich cores under combined transverse shear and compression,” Compos. Part A- Appl. S., vol. 38, no. 5, pp. 1288–1295, 2007. DOI: 10.1016/j.compositesa.2006.11.008.
  • A. K. Noor, W. S. Burton, and C. W. Bert, “Computational models for sandwich panels and shells,” Appl. Mech. Rev., vol. 49, no. 3, pp. 155–199, 1996. DOI: 10.1115/1.3101923.
  • J. Mackerle, “Finite element analyses of sandwich structures: a bibliography (1980-2001),” Engineering Computations, vol. 19, no. 2, pp. 206–245, 2002. DOI: 10.1108/02644400210419067.
  • K. H. Lee, P. B. Xavier, and C. H. Chew, “Static response of unsymmetric sandwich beams using an improved zig-zag model,” Compos. Eng., vol. 3, no. 3, pp. 235–248, 1993. DOI: 10.1016/0961-9526(93)90058-R.
  • A. I. Golovanov, V. A. Ivanov, and V. N. Paimushin, “Numerical analysis method for studying local forms of stability loss of bearing layers of three-layered shells using mixed forms,” Mech. Compos. Mater., vol. 31, no. 1, pp. 69–79, 1995. DOI: 10.1007/BF00616739.
  • Y. Frostig, “Behavior of delaminated sandwich beam with transversely flexible core—high order theory,” Compos. Struct., vol. 20, no. 1, pp. 1–16, 1992. DOI: 10.1016/0263-8223(92)90007-Y.
  • H. X. Wang and S. W. Chung, “Equivalent elastic constants of truss core sandwich plates,” J. Press Vess-T ASME, vol. 133, no. 4, pp. 041203, 2011. DOI: 10.1115/1.4003473.
  • Y. X. Li et al., “Homogenization for macro-fiber composites using Reissner–Mindlin plate theory,” J. Intel. Mat. Syst. Str., vol. 27, no. 18, pp. 2477–2488, 2016. DOI: 10.1177/1045389X16633763.
  • D. Caillerie and J. C. Nedelec, “Thin elastic and periodic plates,” Math. Method Appl. Sci., vol. 6, no. 1, pp. 159–191, 1984. DOI: 10.1002/mma.1670060112.
  • N. Buannic, P. Cartraud, and T. Quesnel, “Homogenization of corrugated core sandwich panels,” Compos. Struct., vol. 59, no. 3, pp. 299–312, 2003. DOI: 10.1016/S0263-8223(02)00246-5.
  • G. Bartolozzi, N. Baldanzini, and M. Pierini, “Equivalent properties for corrugated cores of sandwich structures: a general analytical method,” Compos. Struct., vol. 108, pp. 736–746, 2014. DOI: 10.1016/j.compstruct.2013.10.012.
  • L. Valdevit, J. W. Hutchinson, and A. G. Evans, “Structurally optimized sandwich panels with prismatic cores,” Int. J. Solids Struct., vol. 41, no. 18, pp. 5105–5124, 2004. DOI: 10.1016/j.ijsolstr.2004.04.027.
  • L. Valdevit et al., “Structural performance of near-optimal sandwich panels with corrugated cores,” Int. J. Solids Struct., vol. 43, no. 16, pp. 4888–4905, 2006. DOI: 10.1016/j.ijsolstr.2005.06.073.
  • G. Kress and M. Winkler, “Corrugated laminate homogenization model,” Compos. Struct., vol. 92, no. 3, pp. 795–810, 2010. DOI: 10.1016/j.compstruct.2009.08.027.
  • T. Yokozeki et al., “Mechanical properties of corrugated composites for candidate materials of flexible wing structures,” Compos. Part A- Appl. S., vol. 37, no. 10, pp. 1578–1586, 2006. DOI: 10.1016/j.compositesa.2005.10.015.
  • G. Bartolozzi et al., “An equivalent material formulation for sinusoidal corrugated cores of structural sandwich panels,” Compos. Struct., vol. 100, pp. 173–185, 2013. DOI: 10.1016/j.compstruct.2012.12.042.
  • S. Kazemahvazi and D. Zenkert, “Corrugated all-composite sandwich structures,” Part 1: Mod. Compos. Sci. Technol., vol. 69, no. 7, pp. 913–919, 2009.
  • S. Kazemahvazi, D. Tanner, and D. Zenkert, “Corrugated all-composite sandwich structures. Part 2: failure mechanisms and experimental programme,” Compos. Sci. Technol., vol. 69, no. 7, pp. 920–925, 2009. DOI: 10.1016/j.compscitech.2008.11.035.
  • J. S. Yang et al., “Modal response of all-composite corrugated sandwich cylindrical shells,” Compos. Sci. Technol., vol. 115, pp. 9–20, 2015. DOI: 10.1016/j.compscitech.2015.04.015.
  • A. Samanta and M. Mukhopadhyay, “Finite element static and dynamic analyses of folded plates,” Eng. Struct., vol. 21, no. 3, pp. 277–287, 1999. DOI: 10.1016/S0141-0296(97)90172-3.
  • K. M. Liew, L. X. Peng, and S. Kitipornchai, “Vibration analysis of corrugated Reissner–Mindlin plates using a mesh-free Galerkin method,” Int. J. Mech. Sci., vol. 51, no. 9, pp. 642–652, 2009. DOI: 10.1016/j.ijmecsci.2009.06.005.
  • D. Briassoulis, “Equivalent orthotropic properties of corrugated sheets,” Comput. Struct., vol. 23, no. 2, pp. 129–138, 1986. DOI: 10.1016/0045-7949(86)90207-5.
  • Y. Xia, M. I. Friswell, and E. I. S. Flores, “Equivalent models of corrugated panels,” Int. J. Solids Struct., vol. 49, no. 13, pp. 1453–1462, 2012. DOI: 10.1016/j.ijsolstr.2012.02.023.
  • H. Mohammadi, S. Ziaei-Rad, and I. Dayyani, “An equivalent model for trapezoidal corrugated cores based on homogenization method,” Compos. Struct., vol. 131, pp. 160–170, 2015. DOI: 10.1016/j.compstruct.2015.04.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.