742
Views
108
CrossRef citations to date
0
Altmetric
Original Articles

Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions

ORCID Icon & ORCID Icon
Pages 1580-1588 | Received 26 Jan 2018, Accepted 27 Jan 2018, Published online: 15 Mar 2018

References

  • M. Jabbari, A. Mojahedin, A. R. Khorshidvand, and M. R. Eslami, “Buckling analysis of a functionally graded thin circular plate made of saturated porous materials,” J. Eng. Mech., vol. 140, no. 2, pp. 287–295, 2013. DOI:10.1061/(ASCE)EM.1943-7889.0000663.
  • M. Jabbari, M. Hashemitaheri, A. Mojahedin, and M. R. Eslami, “Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials,” J. Thermal Stresses, vol. 37, no. 2, pp. 202–220, 2014. DOI:10.1080/01495739.2013.839768.
  • D. Chen, J. Yang, and S. Kitipornchai, “Elastic buckling and static bending of shear deformable functionally graded porous beam,” Compos. Struct., vol. 133, pp. 54–61, 2015. DOI:10.1016/j.compstruct.2015.07.052.
  • D. Chen, J. Yang, and S. Kitipornchai, “Free and forced vibrations of shear deformable functionally graded porous beams,” Int. J. Mech. Sci., vol. 108, pp. 14–22, 2016. DOI:10.1016/j.ijmecsci.2016.01.025.
  • D. Chen, S. Kitipornchai, and J. Yang, “Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core,” Thin-Walled Struct., vol. 107, pp. 39–48, 2016. DOI:10.1016/j.tws.2016.05.025.
  • A. S. Rezaei and A. R. Saidi, “Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates,” Compos. Part B: Eng., vol. 91, pp. 361–370, 2016. DOI:10.1016/j.compositesb.2015.12.050.
  • N. Wattanasakulpong and V. Ungbhakorn, ““Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities,”” Aerosp. Sci. Technol., vol. 32, no. 1, pp. 111–120, 2014. DOI: 10.1016/j.ast.2013.12.002.
  • S. A. Yahia, H. A. Atmane, M. S. A. Houari, and A. Tounsi, “Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories,” Struct. Eng. Mech., vol. 53, no. 6, pp. 1143–1165, 2015. DOI:10.12989/sem.2015.53.6.1143.
  • H. A. Atmane, A. Tounsi, and F. Bernard, “Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations,” Int. J. Mech. Mater. Des., pp. 1–14, 2015.
  • H. A. Atmane, A. Tounsi, F. Bernard, and S. R. Mahmoud, “A computational shear displacement model for vibrational analysis of functionally graded beams with porosities,” Steel Compos. Struct., vol. 19, no. 2, pp. 369–384, 2015. DOI:10.12989/scs.2015.19.2.369.
  • M. R. Barati and A. M. Zenkour, “Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions,” J. Vib. Control, 2016. DOI:10.1177/1077546316672788.
  • I. Duarte, E. Ventura, S. Olhero, and J. M. Ferreira, “An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes,” Carbon, vol. 95, pp. 589–600, 2015. DOI:10.1016/j.carbon.2015.08.065.
  • I. Duarte and J. M. Ferreira, “Composite and nanocomposite metal foams,” Materials, vol. 9, no. 2, p. 79, 2016. DOI:10.3390/ma9020079.
  • L. L. Ke, J. Yang, and S. Kitipornchai, “Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams,” Compos. Struct., vol. 92, no. 3, pp. 676–683, 2010. DOI:10.1016/j.compstruct.2009.09.024.
  • K. M. Liew, Z. X. Lei, and L. W. Zhang, “Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review,” Compos. Struct., vol. 120, pp. 90–97, 2015. DOI:10.1016/j.compstruct.2014.09.041.
  • M. Rafiee, X. F. Liu, X. Q. He, and S. Kitipornchai, “Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates,” J. Sound Vib., vol. 333, no. 14, pp. 3236–3251, 2014. DOI:10.1016/j.jsv.2014.02.033.
  • L. L. Ke, J. Yang, and S. Kitipornchai, “Dynamic stability of functionally graded carbon nanotube-reinforced composite beams,” Mech. Adv. Mater. Struct., vol. 20, no. 1, pp. 28–37, 2013. DOI:10.1080/15376494.2011.581412.
  • L. Li, D. G. Zhang, and W. D. Zhu, “Free vibration analysis of a rotating hub–functionally graded material beam system with the dynamic stiffening effect,” J. Sound Vib., vol. 333, no. 5, pp. 1526–1541, 2014. DOI:10.1016/j.jsv.2013.11.001.
  • M. Mirzaei and Y. Kiani, “Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets,” Acta Mechanica, vol. 7, no. 227, pp. 1869–1884, 2016. DOI:10.1007/s00707-016-1593-6.
  • H. L. Wu, J. Yang, and S. Kitipornchai, “Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections,” Compos. Part B: Eng., vol. 90, pp. 86–96, 2016. DOI:10.1016/j.compositesb.2015.12.007.
  • K. Mehar and S. K. Panda, “Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field,” Compos. Struct., vol. 143, pp. 336–346, 2016. DOI:10.1016/j.compstruct.2016.02.038.
  • N. D. Duc, P. H. Cong, N. D. Tuan, P. Tran, and N. Van Thanh, “Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations,” Thin-Walled Struct., vol. 115, pp. 300–310, 2017. DOI:10.1016/j.tws.2017.02.016.
  • A. G. Arani, M. Jamali, M. Mosayyebi, and R. Kolahchi, “Wave propagation in FG-CNT-reinforced piezoelectric composite micro plates using viscoelastic quasi-3D sinusoidal shear deformation theory,” Compos. Part B: Eng., vol. 95, pp. 209–224, 2016. DOI:10.1016/j.compositesb.2016.03.077.
  • A. M. Fattahi and B. Safaei, “Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions,” Microsystem Technol., vol. 23, pp. 5079–5091, 2017.
  • C. Feng, S. Kitipornchai, and J. Yang, “Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs),” Compos. Part B: Eng., vol. 110, pp. 132–140, 2017. DOI:10.1016/j.compositesb.2016.11.024.
  • H. S. Shen, F. Lin, and Y. Xiang, “Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations,” Eng. Struct., vol. 140, pp. 89–97, 2017. DOI:10.1016/j.engstruct.2017.02.069.
  • C. Feng, S. Kitipornchai, and J. Yang, “Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs),” Eng. Struct., vol. 140, pp. 110–119, 2017. DOI:10.1016/j.engstruct.2017.02.052.
  • H. S. Shen, Y. Xiang, and F. Lin, “Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments,” Compos. Struct., vol. 170, pp. 80–90, 2017. DOI:10.1016/j.compstruct.2017.03.001.
  • M. Song, S. Kitipornchai, and J. Yang, “Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets,” Compos. Struct., vol. 159, pp. 579–588, 2017. DOI:10.1016/j.compstruct.2016.09.070.
  • S. Kitipornchai, D. Chen, and J. Yang, “Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets,” Mater. Design, vol. 116, pp. 656–665, 2017. DOI:10.1016/j.matdes.2016.12.061.
  • C. T. Loy, K. Y. Lam, and C. Shu, “Analysis of cylindrical shells using generalized differential quadrature,” Shock Vib., vol. 4, no. 3, pp. 193–198, 1997. DOI:10.1155/1997/538754.
  • L. L. Ke, Y. S. Wang, and J. N. Reddy, “Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions,” Compos. Struct., vol. 116, pp. 626–636, 2014. DOI:10.1016/j.compstruct.2014.05.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.