822
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

The nonlinear dynamic response of functionally graded basalt/nickel composite plates

ORCID Icon
Pages 1719-1734 | Received 31 Jan 2018, Accepted 23 Feb 2018, Published online: 19 Mar 2018

References

  • G. N. Praveen, and J. N. Reddy, “Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates,” Int. J. Solids Struct., vol. 35, no. 33, pp. 4457–4476, 1998. DOI:10.1016/S0020-7683(97)00253-9.
  • J. Woo and S. A. Meguid, “Nonlinear analysis of functionally graded plates and shallow shells,” Int. J. Solids Struct., vol. 38, no. 42-43, pp. 7409–7421, 2001. DOI:10.1016/S0020-7683(01)00048-8.
  • L. Banks-Sills, R. Eliasi, and Y. Berlin, “Modeling of functionally graded materials in dynamic analyses,” Comp. Part B: Eng., vol. 33, no. 1, pp. 7–15, 2002. DOI:10.1016/S1359-8368(01)00057-9.
  • M. T. Tilbrook, R. J. Moon, and M. Hoffman, “Finite element simulations of crack propagation in functionally graded materials under flexural loading,” Eng. Fract. Mech., vol. 72, no. 16, pp. 2444–2467, 2005. DOI:10.1016/j.engfracmech.2005.04.001.
  • H.-H. Chang and J.-Q. Tarn, “A state space approach for exact analysis of composite laminates and functionally graded materials,” Int. J. Solids Struct., vol. 44, no. 5, pp. 1409–1422, 2007. DOI:10.1016/j.ijsolstr.2006.06.023.
  • T. Hause, “Advanced functionally graded plate-type structures impacted by blast loading,” Int. J. Impact Eng., vol. 38, no. 5, pp. 314–321, 2011. DOI:10.1016/j.ijimpeng.2010.11.006.
  • F. Ramirez, P. R. Heyliger, and E. Pan, “Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach,” Comp. Part B: Eng., vol. 37, no. 1, pp. 10–20, 2006. DOI:10.1016/j.compositesb.2005.05.009.
  • C. Aksoylar, A. Ömercikog, Z. Mecitoglu, and M. H. Omurtag, “Nonlinear transient analysis of FGM and FML plates under blast loads by experimental and mixed FE methods,” Compos. Struct., vol. 94, pp. 731–744, 2012. DOI:10.1016/j.compstruct.2011.09.008.
  • W. M. Rubio, G. H. Paulino, and E. C. N. Silva, “Analysis, manufacture and characterization of Ni/Cu functionally graded structures,” Mater. Des., vol. 41, pp. 255–265, 2012. DOI:10.1016/j.matdes.2012.04.038.
  • F. Farhatnia, G. Sharifi, and S. Rasouli, “Numerical and Analytical Approach of Thermo-Mechanical Stresses in FGM Beams,” Proc. World Cong. Eng., vol. II, 2009.
  • M. Bhandari and K. Purohit, “Analysis of functionally graded material plate under transverse load for various boundary conditions,” IOSR J. Mech. Civil Eng., vol. 10, no. 5, pp. 46–55, 2014. DOI:10.9790/1684-1054655.
  • E. Jomehzadeh, A. R. Saidi, and S. R. Atashipour, “An analytical approach for stress analysis of functionally graded annular sector plates,” Mater. Des., vol. 30, no. 9, pp. 3679–3685, 2009. DOI:10.1016/j.matdes.2009.02.011.
  • A. Taghvaeipour, M. Bonakdar, and M. T. Ahmadian, “Application of a new cylindrical element formulation in finite element structural analysis of FGM hollow cylinders,” Finite Elem. Anal. Des., vol. 50, pp. 1–7, 2012. DOI:10.1016/j.finel.2011.08.006.
  • S. M. Hasheminejad and B. Gheshlaghi, “Three-dimensional elastodynamic solution for an arbitrary thick FGM rectangular plate resting on a two parameter viscoelastic foundation,” Compos. Struct., vol. 94, no. 9, pp. 2746–2755, 2012. DOI:10.1016/j.compstruct.2012.04.010.
  • K. Mehar, S. K. Panda, A. Dehengia, V. RanjanKar, “Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment,” J. Sandwich Struct. Mater., vol. 18, no. 2, pp. 151–173, 2015. DOI:10.1177/1099636215613324.
  • M. A. A. Meziane, H. H. Abdelaziz, and A. Tounsi, “An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions,” J. Sandwich Struct. Mater., vol. 16, no. 3, pp. 293–318, 2014. DOI:10.1177/1099636214526852.
  • K. Arslan, R. Gunes, Mal. Apalak, J. N. Reddy, “Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates,” J. Compos. Mater., vol. 51, no. 29, pp. 4009–4028, 2017. DOI:10.1177/0021998317695423.
  • M. Bennoun, M. S. A. Houari and A. Tounsi, “A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates,” Mech. Adv. Mater. Struct., vol. 23, no. 4, pp. 423–431, 2016. DOI:10.1080/15376494.2014.984088.
  • H. Bellifa, A. Bakora, A. Tounsi, A. A. Bousahla, S. R. Mahmoud, “An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates,” Steel Compos. Struct., vol. 25, no. 3, pp. 257–270, 2017.
  • A. A. Bousahla, S. Benyoucef, A. Tounsi, S. R. Mahmoud, “On thermal stability of plates with functionally graded coefficient of thermal expansion,” Struct. Eng. Mech., vol. 60, no. 2, pp. 313–335, 2016. DOI:10.12989/sem.2016.60.2.313.
  • F. El-Haina, A. Bakora, A. A. Bousahla, A. Tounsi, S. R. Mahmoud, “A simple analytical approach for thermal buckling of thick functionally graded sandwich plates,” Struct. Eng. Mech., vol. 63, no. 5, pp. 585–595, 2017.
  • B. Behjat, M. Salehi, A. Armin, M. Sadighi, and M. Abbasi, “Static and dynamic analysis of functionally graded piezoelectric plates under mechanical and electrical loading,” Sci. Iran., vol. 18, no. 4, pp. 986–994, 2011. DOI:10.1016/j.scient.2011.07.009.
  • P. Jadhav and K. Bajoria, “Stability analysis of piezoelectric FGM Plate subjected to electro-mechanical loading using finite element method,” Int. J. Appl. Sci. Eng., vol. 11, no. 4, pp. 375–391, 2013.
  • S. Kugler, P. A. Fotiu, and J. Murin, “The numerical analysis of FGM shells with enhanced finite elements,” Eng. Struct., vol. 49, pp. 920–935, 2013. DOI:10.1016/j.engstruct.2012.12.033.
  • M. Arefi, “Buckling analysis of the functionally graded sandwich rectangular plates integrated with piezoelectric layers under bi-axial loads,” J. Sandwich Struct. Mater., vol. 19, no. 6, pp. 712–735, 2016. DOI:10.1177/1099636216642393.
  • M. M. Shahzamanian, B. B. Sahari, M. Bayat, F. Mustapha, and Z. N. Ismarrubie, “Finite element analysis of thermoelastic contact problem in functionally graded axisymmetric brake disks,” Compos. Struct., vol. 92, no. 7, pp. 1591–1602, 2010. DOI:10.1016/j.compstruct.2009.11.022.
  • K. Swaminathan, D. M. Sangeetha, “Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods,” Compos. Struct., vol. 160, no. 15, pp. 43–60, 2017. DOI:10.1016/j.compstruct.2016.10.047.
  • V. Fiore, G. D. Bella, A. Valenza, “Glass – basalt/epoxy hybrid composites for marine applications,” Mater. Des., vol. 32, pp. 2091–2099, 2011. DOI:10.1016/j.matdes.2010.11.043.
  • V. Lopresto, C. Leone, I. D. Iorio, “Mechanical characterisation of basalt fibre reinforced plastic,” Compos. Part B, vol. 42, pp. 717–723, 2011. DOI:10.1016/j.compositesb.2011.01.030.
  • Y. Zhang, C. Yu, P. K. Chu, F. Lv, C. Zhang, J. Ji, R. Zhang, H. Wang, “Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites,” Mater. Chem. Phys., vol. 133, pp. 845–849, 2012. DOI:10.1016/j.matchemphys.2012.01.105.
  • R. Eslami-Farsani, S. M. R. Khalili, Z. Hedayatnasab, N. Soleimani, “Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene – clay nanocomposites,” Mater. Des., vol. 53, pp. 540–549, 2014. DOI:10.1016/j.matdes.2013.07.012.
  • H. M. Elsanadedy, T. H. Almusallam, S. H. Alsayed, and Y. A. Al-Salloum, “Flexural strengthening of RC beams using textile reinforced mortar – Experimental and numerical study,” Compos. Struct., vol. 97, pp. 40–55, 2013. DOI:10.1016/j.compstruct.2012.09.053.
  • C. Colombo, L. Vergani, and M. Burman, “Static and fatigue characterisation of new basalt fibre reinforced composites,” Compos. Struct., vol. 94, no. 3, pp. 1165–1174, 2012. DOI:10.1016/j.compstruct.2011.10.007.
  • M. E. M. Mahroug, A. F. Ashour, and D. Lam, “Experimental response and code modelling of continuous concrete slabs reinforced with BFRP bars,” Compos. Struct., vol. 107, pp. 664–674, 2014. DOI:10.1016/j.compstruct.2013.08.029.
  • R. Rajendran and J. M. Lee, “Blast loaded plates,” Mar. Struct., vol. 22, pp. 99–127, 2009. DOI:10.1016/j.marstruc.2008.04.001.
  • S. Abrate, “Transient response of beams, plates, and shells to impulsive loads,” Proc. ASME Int. Mech. Eng. Cong. Exposition, vol. 9, no. 2008, pp. 107–116, 2007.
  • Z. Kazancı, “Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses,” Int. J. Non-Linear Mech., vol. 46, pp. 807–817, 2011. DOI:10.1016/j.ijnonlinmec.2011.03.011.
  • H. S. Türkmen, Z. Mecitoğlu, “Nonlinear structural response of laminated composite plates subjected to blast loading,” AIAA J., vol. 37, pp. 1639–1647, 1999. DOI:10.2514/3.14366.
  • Z. Kazancı, Z. Mecitoğlu, “Nonlinear dynamic behavior of simply supported laminated composite plates subjected to blast load,” J. Sound Vib., vol. 317, pp. 883–897, 2008. DOI:10.1016/j.jsv.2008.03.033.
  • S. Süsler, H. S. Türkmen, Z. Kazancı, “The nonlinear dynamic behaviour of tapered laminated plates subjected to blast loading,” Shock Vib., vol. 19, pp. 1235–1255, 2012. DOI:10.1155/2012/936412.
  • M. Şenyer, Z. Kazancı, “Nonlinear dynamic analysis of a laminated hybrid composite plate subjected to time dependent external pulses,” Acta Mech. Solida Sinica, vol. 25, pp. 586–597, 2012. DOI:10.1016/S0894-9166(12)60054-8.
  • M. Yazici, J. Wright, D. Bertin, and A. Shukla, “Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading,” Compos. Struct., vol. 110, pp. 98–109, 2014. DOI:10.1016/j.compstruct.2013.11.016.
  • A. Chen, H. Kim, and R. J. Asaro, “Non-explosive simulated blast loading of balsa core sandwich composite beams,” Compos. Struct., vol. 93, no. 11, pp. 2768–2784, 2011. DOI:10.1016/j.compstruct.2011.05.027.
  • S. Jang and H.-J. Choi, “Integrated design of blast resistance panels and materials,” Compos. Struct., vol. 102, pp. 154–163, 2013. DOI:10.1016/j.compstruct.2013.02.016.
  • C. Aksoylar, A. Ömercikoglu, Z. Mecitoglu, and M. H. Omurtag, “Nonlinear transient analysis of FGM and FML plates under blast loads by experimental and mixed FE methods,” Compos. Struct., vol. 94, pp. 731–744, 2012. DOI:10.1016/j.compstruct.2011.09.008.
  • S. Baştürk, H. Uyanık, and Z. Kazancı, “An analytical model for predicting the deflection of laminated basalt composite plates under dynamic loads,” Compos. Struct., vol. 116, pp. 273–285, 2014. DOI:10.1016/j.compstruct.2014.05.018.
  • S. Süsler, H. S. Türkmen, and Z. Kazancı, “Nonlinear dynamic analysis of tapered sandwich plates with multi-layered faces subjected to air blast loading,” Int. J. Mech. Mater. Des., vol. 13, no. 3, pp. 429–451, 2016. DOI:10.1007/s10999-016-9346-1.
  • S. Baştürk, H. Uyanık, and Z. Kazancı, “Nonlinear damped vibrations of a hybrid laminated composite plate subjected to blast load,” Procedia Eng., vol. 88, pp. 18–25, 2014. DOI:10.1016/j.proeng.2014.11.121.
  • S. Baştürk, H. Uyanık, and Z. Kazancı, “Nonlinear transient response of Basalt/Nickel FGM composite plates under blast load,” Procedia Eng., vol. 167, pp. 30–38, 2016. DOI:10.1016/j.proeng.2016.11.666.
  • ANSYS 10.0 Commercial Software.
  • G. Strang, Introduction to Applied Mathematics. Wellesley. MA. Wellesley-Cambridge Press; 1986.
  • A. D. Gupta, F. H. Gregory, R. L. Bitting, and S. Bhattacharya, “Dynamic analysis of an explosively loaded hinged rectangular plate,” Comput. Struct., vol. 26, pp. 339–344, 1987. DOI:10.1016/0045-7949(87)90263-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.