738
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Multiscale finite element analyses on mechanical properties of graphene-reinforced composites

, , , , &
Pages 1735-1742 | Received 01 Jan 2018, Accepted 25 Feb 2018, Published online: 12 Mar 2018

References

  • R. Ansari, S. Rouhi, and A. Shahnazari, “Investigation of the vibrational characteristics of double-walled carbon nanotubes/double-layered graphene sheets using the finite element method,” Mech. Adv. Mater. Struc., vol. 25, pp. 202–211, 2018. DOI: 10.1080/15376494.2016.1255813.
  • I. L. Chang and J. A. Chen, “The molecular mechanics study on mechanical properties of graphene and graphite,” App. Phys. A-Mater., vol. 119, pp. 265–274, 2015. DOI: 10.1007/s00339-014-8960-8.
  • Y. C. Li et al., “Synergistic effect of different graphene-CNT heterostructures on mechanical and self-healing properties of thermoplastic polyurethane composites,” Mater. Design, vol. 137, pp. 438–445, 2018. DOI: 10.1016/j.matdes.2017.10.018.
  • W. Bauhofer and J. Z. Kovacs, “A review and analysis of electrical percolation in carbon nanotube polymer composites,” Compos. Sci. Technol., vol. 69, pp. 1486–1498, 2009. DOI: 10.1016/j.compscitech.2008.06.018.
  • Z. Gu et al., “Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration,” Carbon, vol. 49, no. 2011, pp. 2475–2482, 2011. DOI: 10.1016/j.carbon.2011.02.016.
  • C. Q. Li et al., “Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer,” Compos. Sci. Technol., vol. 153, pp. 111–118, 2017. DOI: 10.1016/j.compscitech.2017.10.015.
  • L. Sumlo, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991. DOI: 10.1038/354056a0.
  • W. Zhou et al., “Carbon nanotubes as a unique agent to fabricate nanoceramic/metal composite powders for additive manufacturing,” Mater. Design, vol. 137, pp. 276–285, 2018. DOI: 10.1016/j.matdes.2017.10.034.
  • W. Huang et al., “Attaching proteins to carbon nanotubes via diimide-activated amidation,” Nano Lett., vol. 2, pp. 311–314, 2002. DOI: 10.1021/nl010095i.
  • C. Guiderdoni et al., “The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties,” Carbon, vol. 58, pp. 185–197, 2013. DOI: 10.1016/j.carbon.2013.02.049.
  • S. Stankovich et al., “Graphene-based composite materials,” Nature, vol. 442, pp. 282–286, 2006. DOI: 10.1038/nature04969.
  • C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, pp. 385–388, 2008. DOI: 10.1126/science.1157996.
  • X. D. Li et al., “Nanomechanical characterization of single-walled carbon nanotuber reinforced epoxy composites,” Nanotechnology, vol. 15, pp. 1416–1423, 2004. DOI: 10.1088/0957-4484/15/11/005.
  • S. Z. Li et al., “The evolving quality of frictional contact with graphene,” Nature, vol. 539, pp. 541–545, 2016. DOI: 10.1038/nature20135.
  • J. S. M. Zanjani, B. S. Okan, Y. Z. Menceloglu, and M. Yildiz, “Nano-engineered design and manufacturing of high-performance epoxy matrix composites with carbon fiber/selectively integrated graphene as multi-scale reinforcements,” Rsc. Adv., vol. 6, pp. 9495–9506, 2016. DOI: 10.1039/C5RA23665G.
  • R. L. Zhang et al., “Enhanced mechanical properties of multiscale carbon fiber/epoxy composites by fiber surface treatment with graphene oxide/polyhedral oligomeric silsesquioxane,” Compos. Part A-Appl. S., vol. 84, pp. 455–463, 2016. DOI: 10.1016/j.compositesa.2016.02.021.
  • H. M. Chong, S. J. Hinder, and A. C. Taylor, “Graphene nanoplatelet-modified epoxy: Effect of aspect ratio and surface functionality on mechanical properties and toughening mechanisms,” J. Mater. Sci., vol. 51, pp. 8764–8790, 2016. DOI: 10.1007/s10853-016-0160-9.
  • E. Sadollah and R.T. Hashem, “Influence of hydrogen functionalization on mechanical properties of graphene and CNT reinforced in chitosan biological polymer: Multi-scale computational modelling,” Comp. Mater. Sci., vol. 101, pp. 189–193, 2015. DOI: 10.1016/j.commatsci.2015.01.036.
  • K. Kamali and R. Nazemnzhad, “Interlayer influences between double-layer graphene nanoribbons (shear and tensile-compressive) on free vibration using nonlocal elasticity theory,” Mech. Adv. Mater. Struc., vol. 25, pp. 225–237, 2018. DOI: 10.1080/15376494.2016.1255821.
  • L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Load transfer in carbon nanotube epoxy composites,” Appl. Phys. Lett., vol. 73, pp. 3842–3844, 1998. DOI: 10.1063/1.122911.
  • V. Romanov, S. V. Lomov, I. Verpoest, and L. Gorbatikh, “Inter-fiber stresses in composites with carbon nanotube grafted and coated fibers,” Compos. Sci. Technol., vol. 114, pp. 79–86, 2015. DOI: 10.1016/j.compscitech.2015.04.013.
  • K. M. Liew, Z. X Lei, and L. W. Zhang, “Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review,” Compos. Struct., vol. 120, pp. 90–97, 2015. DOI: 10.1016/j.compstruct.2014.09.041.
  • M. Mohammadimehr, B. Rousta Navi, and A. Ghorbanpour Arani, “Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings,” Mech. Adv. Mater. Struc., vol. 24, pp. 1325–1342, 2017. DOI: 10.1080/15376494.2016.1227507.
  • C. M. Hadden et al., “Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments,” Carbon, vol. 95, pp. 100–112, 2015. DOI: 10.1016/j.carbon.2015.08.026.
  • D. Qian, E. C. Dickey, R. Andrew, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett., vol. 76, pp. 2868–2870, 2000. DOI: 10.1063/1.126500.
  • M. H. Wichmann et al., “Glass-fiber-reinforced composites with enhanced mechanical and electrical properties-benefits and limitations of a nanoparticle modified matrix,” Eng. Fract. Mech., vol. 73, pp. 2346–2359, 2006. DOI: 10.1016/j.engfracmech.2006.05.015.
  • J. Zhu et al., “Reinforced epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater., vol. 14, pp. 643–644, 2004. DOI: 10.1002/adfm.200305162.
  • K. N. Spanos, S. K. Georgantzinos, and N. K. Anifantis, “Investigation of stress transfer in carbon nanotube reinforced composites using a multi-scale finite element approach,” Compos. Part B-Eng., vol. 63, pp. 85–93, 2014. DOI: 10.1016/j.compositesb.2014.03.020.
  • G. Dai and L.M. Jr, “Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades,” Compos. Part B-Eng., vol. 78, pp. 349–360, 2015. DOI: 10.1016/j.compositesb.2015.03.073.
  • A. K. Gupta and S. P. Harsha, “Analysis of mechanical properties of carbon nanotube reinforced polymer composites using multi-scale finite element modeling approach,” Compos. Part B-Eng., vol. 95, pp. 172–178, 2016. DOI: 10.1016/j.compositesb.2016.04.005.
  • H. W. Zhou et al., “Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength,” Compos. Part B-Eng., vol. 88, pp. 201–211, 2016. DOI: 10.1016/j.compositesb.2015.10.035.
  • A. R. Alian, S. I. Kundalwal, and S. A. Meguid, “Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes,” Compos. Struct., vol. 131, pp. 545–555, 2015. DOI: 10.1016/j.compstruct.2015.06.014.
  • A. Jain et al., “The Master SN curve approach – A hybrid multi-scale fatigue simulation of short fiber reinforced composites,” Compos. Part A-Appl. S., vol. 91, pp. 510–518, 2016. DOI: 10.1016/j.compositesa.2015.11.038.
  • S. I. Kundalwal and S. Kumar, “Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase,” Mech. Mater., vol. 102, 2016. DOI: 10.1016/j.mechmat.2016.09.002.
  • A. R. Alian, S. I. Kundalwal, and S. A. Meguid, “Multiscale modeling of carbon nanotube epoxy composites,” Polymer, vol. 70, pp. 149–160, 2015. DOI: 10.1016/j.polymer.2015.06.004.
  • S. J. V. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates, “The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation,” Compos. Sci. Technol., vol. 63, pp. 1655–1661, 2003. DOI: 10.1016/S0266-3538(03)00059-9.
  • M. Griebel and J. Hamaekers, “Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites,” Comput. Methods. Appl. Mech. Eng., vol. 193, no. 2004, pp. 1773–1788, 2004. DOI: 10.1016/j.cma.2003.12.025.
  • S. Rahmanian et al., “Carbon and glass hierarchical fibers: influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites,” Mater. Design, vol. 43, pp. 10–16, 2013. DOI: 10.1016/j.matdes.2012.06.025.
  • S. Rahmanian, A. R. Suraya, M. A. Shazed, R. Zahari, and E. S. Zainudin, “Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers,” Mater. Design, vol. 60, pp. 34–40, 2014. DOI: 10.1016/j.matdes.2014.03.039.
  • V. Papadopoulos, P. Seventekidis, and G. Sotiropoulos, “Stochastic multiscale modeling of graphene reinforced composites,” Eng. Struct., vol. 145, pp. 176–189, 2017. DOI: 10.1016/j.engstruct.2017.05.015.
  • F. Lin, Y. Xiang, and H. Shen, “Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites – A molecular dynamics simulation,” Compos. Part B-Eng., vol. 111, pp. 261–269, 2017. DOI: 10.1016/j.compositesb.2016.12.004.
  • G. M. Dai and L. M. Jr, “Graphene reinforced nanocomposites: 3D simulation of damage and fracture,” Comp. Mater. Sci., vol. 95, pp. 684–692, 2014. DOI: 10.1016/j.commatsci.2014.08.011.
  • S. Shadlou, B. A. Moghadam, and F. Taheri, “The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites,” Mater. Design, vol. 59, pp. 439–447, 2014. DOI: 10.1016/j.matdes.2014.03.020.
  • T. K. Gupta et al., “Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites,” Rsc. Adv., vol. 5, pp. 16921–16930, 2015. DOI: 10.1039/C4RA14223C.
  • X. Zhao, Q. Zhang, and D. Chen, “Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites,” Macromolecules, vol. 43, pp. 2357–2363, 2010. DOI: 10.1021/ma902862u.
  • J. Jia et al., “3D network graphene interlayer for excellent interlaminar toughness and strength in fiber reinforced composites,” Carbon, vol. 95, pp. 978–986, 2015. DOI: 10.1016/j.carbon.2015.09.001.
  • K. S. Novoselov et al., “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666–669, 2004. DOI: 10.1126/science.1102896.
  • G. I. Giannopoulos, I. A. Liosatos, and A. K. Moukanidis, “Parametric study of elastic mechanical properties of graphene nanoribbons by a new structural mechanics approach,” Physica E., vol. 44, pp. 124–134, 2011. DOI: 10.1016/j.physe.2011.08.001.
  • B.R. Gelin, Molecular Modeling of Polymer Structures and Properties. Cincinnati, OH, USA: Hanser/Gardner Publishers, 1994.
  • G. I. Giannopoulos, “Elastic buckling and flexural rigidity of graphene nanoribbons by using a unique translational spring element per interatomic interaction,” Comput. Mater. Sci., vol. 53, pp. 388–395, 2012. DOI: 10.1016/j.commatsci.2011.08.027.
  • W. D. Cornell et al., “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” J. Am. Chem. Soc., vol. 117, pp. 5179–5197, 1995. DOI: 10.1021/ja00124a002.
  • G. D. Seidel and D. C. Lagoudas, “Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites,” Mech. Mater., vol. 38, pp. 884–907, 2006. DOI: 10.1016/j.mechmat.2005.06.029.
  • G. I. Giannopoulos, S. K. Georgantzinos, D. E. Katsareas, and N. K. Anifantis, “Numerical prediction of Young's and shear moduli of carbon nanotube composites ncorporating nanoscale and interfacial effects,” CMES, vol. 56, pp. 231–247, 2010.
  • Y. Han and J. Elliott, “Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites,” Comp. Mater. Sci., vol. 39, pp. 315–323, 2007. DOI: 10.1016/j.commatsci.2006.06.011.
  • M. Arroyo and T. Belytschko, “Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule,” Phys. Rev. B., vol. 69, pp. 115415, 2004. DOI: 10.1103/PhysRevB.69.115415.
  • Y. Huang and R. J. Young, “Analysis of the fragmentation test for carbon-fibre/epoxy model composites by means of Raman spectroscopy,” Compos. Sci. Technol., vol. 4, pp. 505–517, 1994. DOI: 10.1016/0266-3538(94)90033-7.
  • P. W. J. Heuvel, T. Peijs, and R. J. Young, “Failure phenomena in two-dimensional multifibre microcomposites: 2. A Raman spectroscopic study of the influence of inter-fibre spacing on stress concentrations,” Compos. Sci. Technol., vol. 57, pp. 899–911, 1997. DOI: 10.1016/S0266-3538(97)00004-3.
  • L. Gong et al., “Interfacial stress transfer in a graphene monolayer nanocomposite,” Adv. Mater., vol. 22, pp. 2694–2697, 2010. DOI: 10.1002/adma.200904264.
  • F. Ricardo, P. A. Denis, H. Pardo, C. Goyenola, and A. W. Mombrú, “Mechanical properties of graphene nanoribbons,” J. Phys-Condens. Mat., vol. 21, pp. 285304, 2009. DOI: 10.1088/0953-8984/21/28/285304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.