236
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Nano porous piezoelectric energy harvester by surface effect model

Pages 754-760 | Received 07 Mar 2018, Accepted 28 Jun 2018, Published online: 23 Mar 2019

References

  • C. L. Zhang, J. S. Yang, and W. Q. Chen. “Low–frequency magnetic energy harvest using multiferroic composite plates,” Phys Lett A., vol. 374, pp. 2406–2409, 2010. doi:10.1016/j.physleta.2010.04.019.
  • A. G. Avila Bernal and L. E. Linares Garcia. “The modelling of an electromagnetic energy harvesting architecture,” Appl Math Modell., vol. 36, no. 10, 4728–4741, 2012. doi:10.1016/j.apm.2011.12.007.
  • L. Dhakar, H. C. Liu, F. E. H. Tay, and C. K. Lee. “A new energy harvester design for high power output at low frequencies,” Sens Actuators A., vol. 199, pp. 344–352, 2013. doi:10.1016/j.sna.2013.06.009.
  • F. Reguera, F. E. Dotti, and S. P. Machado. “Rotation control of a parametrically excited pendulum by adjusting its length,” Mech Res Commun., vol. 72, pp. 74–80, 2016. doi:10.1016/j.mechrescom.2016.01.011.
  • Z. T. Yang and J. S. Yang. “Connected vibrating piezoelectric bimorph beams as a wide–band piezoelectric power harvester,” J Intell Mater Syst Struct., vol. 20, no. 5, pp. 569–574, 2009. doi:10.1177/1045389X08100042.
  • J. M. Xie, J. S. Yang, H. P. Hu, Y. T. Hu, and X. D. Chen. “A piezoelectric energy harvester based on flow–induced flexural vibration of a circular cylinder,” J Intell Mater Syst Struct., vol. 23, no. 2, pp. 135–139, 2012. doi:10.1177/1045389X11431744.
  • Z. S. Chen, Y. M. Yang, Z. M. Lu, and Y. T. Luo. “Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams,” Physica B., vol. 410, pp. 5–12, 2013. doi:10.1016/j.physb.2012.10.029.
  • P. Pondrom, J. Hillenbrand, G. M. Sessler, J. Bös, and T. Melz. “Vibration-based energy harvesting with stacked piezoelectrets,” Appl Phys Lett., vol. 104, no. 17, pp. 172901, 2014. doi:10.1063/1.4874305.
  • M. E. Gurtin, J. Weissmuller, and F. Larche. “A general theory of curved deformable interfaces in solids at equilibrium,” Philos Mag A., vol. 78, no. 5, pp. 1093–1109, 1998. doi:10.1080/01418619808239977.
  • Z. Yan and L. Y. Jiang. “Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints,” Proceedings of the Royal Society A., vol. 468, pp. 3458–3475, 2012. doi:10.1098/rspa.2012.0214.
  • Q. Chen, N. Pugno, and Z. Y. Li. “Influence of surface stress on elastic constants of nanohoneycombs,” Physica E., vol. 53, pp. 217–222, 2013. doi:10.1016/j.physe.2013.05.001.
  • X. L. Peng and G. Y. Huang. “Elastic vibrations of a cylindrical nanotube with the effect of surface stress and surface inertia,” Physica E., vol. 54, pp. 98–102, 2013. doi:10.1016/j.physe.2013.06.009.
  • S. Hosseini-Hashemi, M. Fakher, R. Nazemnezhad, and M. H. S. Haghighi. “Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects,” Composites Part B., vol. 61, no. 26–27, pp. 66–72, 2014. doi:10.1016/j.compositesb.2014.01.031.
  • K. Kiani. “Surface effect on free transverse vibrations and dynamic instability of current-carrying nanowires in the presence of a longitudinal magnetic field,” Phys Lett A., vol. 378, no. 26–27, pp. 1834–1840, 2014. doi:10.1016/j.physleta.2014.04.039.
  • R. Ansari, V. Mohammadi, M. F. Shojaei, R. Gholami, and S. Sahmani. “On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory,” Composites Part B., vol. 60,pp. 158–166, 2014. doi:10.1016/j.compositesb.2013.12.066.
  • M. Mohammadimehr, B. R. Navi, and A. G. Arani. “Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings,” Mech Adv Mater Struct., vol. 24, no. 16,1325–1342, 2017. doi:10.1080/15376494.2016.1227507.
  • O. Rahmani, S. Norouzi, H. Golmohammadi, and S. A. H. Hosseini. “Dynamic response of a double, single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects,” Mech Adv Mater Struct., vol. 24, no. 15, pp. 1274–1291, 2017. doi:10.1080/15376494.2016.1227504.
  • T. Fan, G. P. Zou, and L. H. Yang. “Nano piezoelectric/piezomagnetic energy harvester with surface effect based on thickness shear mode,” Composites Part B., vol. 74, pp. 166–170, 2015. doi:10.1016/j.compositesb.2015.01.012.
  • M. A. Biot. “Theory of elasticity and consolidation for a porous anisotropic solid,” J Appl Phys., vol. 26, no. 2, pp. 182–185, 1955. doi:10.1063/1.1721956.
  • M. A. Biot. “Theory of propagation of elastic waves in a fluid-saturated porous solid,” I. Low-frequency range. Journal of the Acoustical Society of America., vol. 28, no. 2, pp. 168–178, 1956. doi:10.1121/1.1908239.
  • D. Durban, T. Cohen, and Y. Hollander. “Plastic response of porous solids with pressure sensitive matrix,” Mech Res Commun., vol. 37, no. 7, pp. 636–641, 2010. doi:10.1016/j.mechrescom.2010.09.002.
  • A. R. Khoei, E. Haghighat. “Extended finite element modeling of deformable porous media with arbitrary interfaces,” Appl Math Modell., vol. 35, no. 11, pp. 5426–5441, 2011. doi:10.1016/j.apm.2011.04.037.
  • K. Miled, K. Sab, and R. Le Roy. “Effective elastic properties of porous materials: Homogenization schemes vs experimental data,” Mech Res Commun., vol. 38, no. 2, pp. 131–135, 2011. doi:10.1016/j.mechrescom.2011.01.009.
  • S. Papargyri-Beskou, D. Polyzos, and D. E. Beskos, 2012. Wave propagation in 3-D poroelastic media including gradient effects. Archieve of Applied Mechanics vol. 82, no. 10–11, 1569–1584. doi:10.1007/s00419-012-0675-8.
  • J. Sladek, V. Sladek, M. Gfrerer, and M. Schanz. “Mindlin theory for the bending of porous plates,” Acta Mechanica., vol. 226, no. 6,1909–1928, 2015. doi:10.1007/s00707-014-1287-x.
  • X. Luo, J. Y. Xu, E. L. Bai, and W. M. Li. “Mechanical properties of ceramics-cement based porous material under impact loading,” Materials & Design., vol. 55, pp. 778–784, 2014. doi:10.1016/j.matdes.2013.10.046.
  • M. D. Sharma. “Propagation and attenuation of Rayleigh waves in a partially-saturated porous solid with impervious boundary,” European Journal of Mechanics A., vol. 49, pp. 158–168, 2015. doi:10.1016/j.euromechsol.2014.07.008.
  • E. F. Joubaneh, A. Mojahedin, A. R. Khorshidvand, and M. Jabbari. “Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load,” J Sandwich Struct Mater., vol. 17, no. 1, pp. 3–25, 2015. doi:10.1177/1099636214554172.
  • C. J. Li and J. L. Feng. “Adsorption-induced permeability change of porous material: a micromechanical model and its applications,” Archive of Applied Mechanics., vol. 86, no. 3, pp. 465–481, 2016. doi:10.1007/s00419-015-1041-4.
  • R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and A. A. Zadpoor. “Effect of mass multiple counting on the elastic properties of open-cell regular porous biomaterials,” Materials & Design., vol. 89, pp. 9–20, 2016. doi:10.1016/j.matdes.2015.09.052.
  • C. L. Jia, Y. Q. Chen, and Z. P. Huang. “New micromechanics model for saturated porous media with connected pores,” Archive of Applied Mechanics., vol. 86, no. 9, pp. 1579–1590, 2016. doi:10.1007/s00419-016-1136-6.
  • F. Wu, Z. Y. Zhou, L. Y. Duan, and Z. Y. Xiao. “Experimental and numerical investigations on compressive properties of porous twisted wire materials,” Mech Adv Mater Struct., vol. 24, no. 12,pp. 1017–1029, 2017. doi:10.1080/15376494.2016.1202358.
  • A. K. Vashishth and V. Gupta. “Vibrations of porous piezoelectric ceramic plates,” J Sound Vib., vol. 325, no. 4–5, pp. 781–797, 2009. doi:10.1016/j.jsv.2009.03.034.
  • S. Papargyri-Beskou and S. V. Tsinopoulos. “Transient dynamic analysis of a fluid-saturated porous gradient elastic column,” Acta Mechnica., vol. 222, no. 3–4, pp. 351–362, 2011. doi:10.1007/s00707-011-0539-2.
  • A. K. Vashishth and V. Gupta. “Wave propagation in transversely isotropic porous piezoelectric materials,” Int J Solids Struct., vol. 46, no. 20, pp. 3620–3632, 2009. doi:10.1016/j.ijsolstr.2009.06.011.
  • M. D. Sharma. “Piezoelectric effect on the velocities of waves in an anisotropic piezo-poroelastic medium,” Proceedings of the Royal Society A., vol. 466, pp. 1977–1992, 2010. doi:10.1098/rspa.2009.0534.
  • A. M. Gaur and D. S. Rana. “Dispersion relations for SH waves propagation in a porous piezoelectric (PZT-PVDF) composite structure,” Acta Mech., vol. 226, no. 12, pp. 4017–4029, 2015. doi:10.1007/s00707-015-1443-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.