172
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effect of nanotwin and dislocation pileup at twin boundary on dislocation emission from an interfacial collinear crack tip in nanocrystalline bimaterials

, &
Pages 965-974 | Received 12 Jun 2018, Accepted 17 Jul 2018, Published online: 20 Jan 2019

References

  • I. A. Ovid'ko, R. Z. Valiev and Y. T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials. Progress Mater. Sci., vol. 94, pp. 462–540, 2018.
  • H. Feng, Q. H. Fang, B. Liu, Y. Liu, Y. W. Liu and P. H. Wen, Nucleation and growth mechanisms of nanoscale deformation twins in hexagonal-close-packed metal magnesium, Mech. Mater., vol. 109, pp. 26–33, 2017.
  • J. Zhao, J. Liu, G. Kang, L. An and X. Zhang, The competitive nucleation of misfit dislocation dipole and misfit extended dislocation dipole in nanocomposites. Acta Mech., vol. 228 (7), pp. 2541–2554, 2017.
  • H. Feng, Y. C. Lam, K. Zhou, S. B. Kumar and W. J. Wu, Elastic-plastic behavior analysis of an arbitrarily oriented crack near an elliptical inhomogeneity with generalized Irwin correction. Eur. J. Mech. A/Solids., vol. 67, pp. 177–186, 2018.
  • Z. P. Wang, H. Feng, F. Liu, Q. H. Fang, Y. W. Liu and P. H. Wen, Effect of wedge disclination dipole on dislocation emission from a surface crack tip in nanocrystalline materials. Theor. Appl. Fract. Mech., vol. 81, pp. 25–31, 2016.
  • Q. Zhou, J. Y. Xie, F. Wang, P. Huang, K. W. Xu and T. J. Lu, The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mech. Sinica, vol. 31, no. 3, pp. 319–337, 2015.
  • R. I. Babicheva, S. V. Dmitriev, L. C. Bai, Y. Zhang, S. W. Kok, G. Z. Kang and K. Zhou, Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys, Comp. Mater. Sci., vol. 117, pp. 445–454, 2016.
  • H. Feng, K. Zhou, Y. C. Lam, Q. Fang, S. B. Kumar and W. Wu, Initiation and growth of microcracks near a grain boundary precipitation in coarse-grained zones of welded materials. Int. J. Solid. Struc., vol. 102, pp. 155–162, 2016.
  • A. Baturin, A. Lotkov, V. Grishkov, I. Rodionov and V. Kudiiarov, Effect of hydrogen redistribution during aging on the structure and phase state of nanocrystalline and coarse-grained TiNi alloys, J. Alloy. Comp., vol. 751, pp. 359–363, 2018.
  • M. Ghommem and A. Abdelkefi, Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications, Microsyst. Technol., vol. 23, no. 12, pp. 5931–5946, 2017.
  • P. Valat-Villain, J. Durinck and P. O. Renault, Grain size dependence of elastic moduli in nanocrystalline Tungsten. J. Nanomater., vol. 2017, pp. 3620910, 2017.
  • G. Sheinerman, Free surface effects on stress-driven grain boundary sliding and migration processes in nanocrystalline materials, Acta Mater., vol. 121, pp. 117–125, 2016.
  • I. A. Ovid’ko, A. G. Sheinerman and E. C. Aifantis, Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids, Acta Mater., vol. 59, pp. 5023–5031, 2011.
  • Q. H. Fang, H. Feng, Y. W. Liu, S. Lin and N. Zhang, Special rotational deformation effect on the emission of dislocations from a crack tip in deformed nanocrystalline solids, Int. J. Solid. Struct., vol. 49, pp. 1406–1412, 2012.
  • H. Feng, Q. H. Fang, L. C. Zhang and Y. W. Liu, Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials, Int. J. Plasticity, vol. 42, pp. 50–64, 2013.
  • A. R. Kalidindi, T. Chookajorn and C. A. Schuh, Nanocrystalline materials at equilibrium: a thermodynamic review. JOM, vol. 67, no. 12, pp. 2834–2843, 2015.
  • H. Feng, Q. H., Fang, Y. W. Liu and C. P. Chen, Nanoscale rotational deformation effect on dislocation emission from an elliptically blunted crack tip in nanocrystalline materials, Int. J. Solid. Struc., vol. 51, pp. 352–358, 2014.
  • Y. X. Zhao, Q. H. Fang and Y. W. Liu, Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials, Philos Mag., vol. 94, no. 7, pp. 700–730, 2014.
  • Y. X. Zhao, Q. H. Fang and Y. W. Liu, Effect of nanograin boundary sliding on nanovoid growth by dislocation shear loop emission in nanocrystalline materials, Eur. J .Mech-A/Solid., vol. 49, pp. 419–429, 2015.
  • Y. G. Liu and R. Y. Ju, A theoretical model for studying the mechanical properties of bimodal nanocrystalline materials, J. Mater. Res., vol. 30, no. 11, pp. 1836–1843, 2015.
  • P. Wang, X. H. Yang and X. B. Tian, Fracture behavior of precracked nanocrystalline materials with grain size gradients, J. Mater. Res., vol. 30, no. 5, pp. 709–716, 2015.
  • K. Zhou, M. S. Wu and A. A. Nazarov, Relaxation of a disclinated tricrystalline nanowire, Acta. Mater., vol. 56, pp. 5828–5836, 2008.
  • A. B. Laursen, K. R. Patraju, M. J. Whitaker, et al., Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energ. Environ. Sci., vol. 8, pp. 1027–1034, 2015.
  • C. Xie, Q. Fang, L. Li, J. Chen, M. Zhang, Y. Liu and B. Rolfe, A disclination model for twinning and de-twinning of nanotwinned copper. Philos. Mag., vol. 96, pp. 301–309, 2016.
  • I. A. Ovid’ko and N. V. Skiba, Nanotwins induced by grain boundary deformation processes in nanomaterials. Scripta Mater., vol. 71, pp. 33–36, 2014.
  • I. A. Ovid’ko, A. G. Sheinerman, R. Z. Valiev, Dislocation emission from deformation-distorted grain boundaries in ultrafine-grained materials, Scripta Mater., vol. 76, pp. 45–48, 2014.
  • S. V. Bobylev and I. A. Ovid’ko, Stress-driven migration of deformation-distorted grain boundaries in nanomaterials, Acta Mater., vol. 88, pp. 260–270, 2015.
  • I. A. Ovid’ko, A. G. Sheinerman, Effects of incoherent nanoinclusions on stress-driven migration of low-angle grain boundaries in nanocomposites, J. Mater. Sci., vol. 50, pp. 4430–4439, 2015.
  • I. A. Ovid’ko and N. V. Skiba, Generation of nanoscale deformation twins at locally distorted grain boundaries in nanomaterials, Int. J. Plast., vol. 62, pp. 50–71, 2014.
  • A. Romanov and V. Vladimirov, Dislocations in solids. Vol. 9, ed FRN Nabarro, Amsterdam, North-Holland, 1992.
  • T.w. He and M.L Feng, Influence of nanoscale deformation twins near a slant edge crack tip on crack blunting in nanocrystalline metals, Eng. Frac. Mech., vol. 184, pp. 286–295, 2017.
  • H. B. Zhao, H. Feng, F. Liu, Y. W. Liu, P. H. Wen, Effect of nanoscale twin and dislocation pileup at twin boundary on crack blunting in nanocrystalline materials, Acta Mech., pp. 1–13, 2017.
  • C. Xie, Q. H. Fang, X. Liu, P. C. Guo, J. K. Chen, M. H. Zhang, Y. W. Liu, B. Rolfe and L. X. Li, Theoretical study on the {-1012} deformation twinning and cracking in coarse-grained magnesium alloys. Int. J. Plasticity., vol. 82, pp. 44–61, 2016.
  • Y. N. Wang, C. Xie, Q. H. Fang, X. Liu, M. H. Zhang, Y. W. Liu and L. X. Li, Toughening effect of the nanoscale twinning induced by particle/matrix interfacial fracture on fine-grained Mg alloys. Int. J. Solid. Struct., vol. 102-103, pp. 230–237, 2016.
  • T. Y. Zhang and J. C. M. Li, Interaction of an edge dislocation with an interfacial crack. J. Appl. Phys., vol. 72, pp. 2215–2226, 1992.
  • Q. H. Fang, Y. W. Liu, Jiang and B. Li, Interaction of a wedge disclination dipole with interfacial cracks, Eng Fract Mech., vol. 73, pp. 1235–1248, 2006.
  • Q. H. Fang and L. C. Zhang, Prediction of the threshold load of dislocation emission in silicon during nanoscratching, Acta. Mater., vol. 61, pp. 5469–5476, 2013.
  • N. L. Muskhelishvili, Soma basic problems of mathematical theory of elasticity, Leyden, Noordhoff, 1975.
  • J. P. Hirth and J. Lothe, Theory of Dislocations, John-Wiley, New York, 1964.
  • M. Creager and P. C. Paris. Elastic field equations for blunt cracks with reference to stress corrosion cracking, Int. J. Fract., vol. 3, pp. 247–252, 1967.
  • J. R. Rice and R. Thomson. Ductile versus brittle behavior of crystals, Philos. Mag., vol. 29, pp. 73–80, 1974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.