293
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Strong and weak form solutions of curved beams via Carrera’s unified formulation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1342-1353 | Received 16 Dec 2017, Accepted 06 Aug 2018, Published online: 05 Nov 2018

References

  • S. P. Timoshenko and J. N. Goodier, Theory of Elasticity. McGraw-Hill, New York, 1970.
  • A. M. Yu and G. H. Nie, “Explicit solutions for shearing and radial stresses in curved beams,” Mech. Res. Commun., vol. 32, no. 3, pp. 323–331, 2005.
  • E. Tufekci and A. Arpaci, “Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations,” Struct. Eng. Mech., vol. 22, no. 2, pp. 131–150, 2006.
  • L. Gimena, F. N. Gimena, and P. Gonzaga, “Structural analysis of a curved beam element defined in global coordinates,” Eng. Struct., vol. 30, no. 11, pp. 3355–3364, 2008.
  • C. R. Babu and G. Prathap, “A linear thick curved beam element,” Int. J. Numer. Methods Eng., vol. 23, no. 7, pp. 1313–1328, 1986.
  • B. Tabarrok, M. Farshad, and H. Yi, “Finite element formulation of spatially curved and twisted rods,” Comput. Methods Appl. Mech. Eng., vol. 70, no. 3, pp. 275–299, 1988.
  • B. D. Reddy and M. B. Volpi, “Mixed finite element methods for the circular arch problem,” Comput. Methods Appl. Mech. Eng., vol. 97, no. 1, pp. 125–145, 1992.
  • J. K. Choi and J. K. Lim, “Simple curved shear beam elements,” Commun. Numer. Meth. Eng., vol. 9, no. 8, pp. 659–669, 1993.
  • P. G. Lee and H. C. Sin, “Locking-free curved beam element based on curvature,” Int. J. Numer. Methods Eng., vol. 37, no. 6, pp. 989–1007, 1994.
  • P. Litewka and J. Rakowski, “The exact thick arch finite element,” Comput. Struct., vol. 68, no. 4, pp. 369–379, 1998.
  • P. Raveendranath, G. Singh, and G. Venkateswara Rao, “A three-noded shear-flexible curved beam element based on coupled displacement field interpolations,” Int. J. Numer. Methods Eng., vol. 51, no. 1, pp. 85–101, 2001.
  • D. Zupan and M. Saje, “Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures,” Computer Methods Appl. Mech. Eng., vol. 192, no. 49–50, pp. 5209–5248, 2003.
  • Z. H. Zhu and S. A. Meguid, “Analysis of three-dimensional locking-free curved beam element,” Int. J. Comput. Eng. Sci., vol. 05, no. 03, pp. 535–556, 2004.
  • R. Nascimbene, “An arbitrary cross section, locking free shear-flexible curved beam finite element,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 14, no. 2, pp. 90–103, 2013.
  • Y. Q. Tang, Z. H. Zhou, and S. L. Chan, “An accurate curved beam element based on trigonometrical mixed polynomial function,” Int. J. Struct. Stabil. Dynam., vol. 13, no. 04, pp. 1250084, 2013.
  • G. Zhang, R. Alberdi, and K. Khandelwal, “Analysis of three-dimensional curved beams using isogeometric approach,” Eng. Struct., vol. 117, pp. 560–574, 2016.
  • E. Carrera, “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking,” Arch. Comput. Methods Eng., vol. 10, no. 3, pp. 215–296, 2003.
  • F. Biscani, G. Giunta, S. Belouettar, E. Carrera, and H. Hu, “Variable kinematic plate elements coupled via Arlequin method, “Int. J. Numer. Methods Eng., vol. 91, no. 12, pp. 1264–1290, 2012.
  • E. Carrera, G. Giunta and M. Petrolo, Beam Structures: Classical and Advanced Theories, John Wiley and Sons, New York, 2011.
  • E. Carrera and G. Giunta, “Refined beam theories based on a unified formulation,” Int. J. Appl. Mech., vol. 02, no. 01, pp. 117–143, 2010.
  • G. Giunta, G. De Pietro, H. Nasser, S. Belouettar, E. Carrera and M. Petrolo, “A thermal stress finite element analysis of beam structures by hierarchical modelling,” Compos. B Eng., vol. 95, pp. 179–195, 2016.
  • G. Giunta, N. Metla, S. Belouettar, A. J. M. Ferreira and E. Carrera, “A thermo-mechanical analysis of isotropic and composite beams via collocation with radial basis functions,” J. Thermal Stresses, vol. 36, no. 11, pp. 1169–1199, 2013.
  • E. Carrera, A. G. de Miguel and A. Pagani, “Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications,” Int. J. Mech. Sci., vol. 120, pp. 286–300, 2017.
  • E. Carrera, G. Giunta, P. Nali and M. Petrolo, “Refined beam elements with arbitrary cross-section geometries,” Comput. Struct., vol. 88, no. 5-6, pp. 283–293, 2010.
  • A. Pagani, A. G. de Miguel, M. Petrolo and E. Carrera, “Analysis of laminated beams via unified formulation and Legendre polynomial expansions,” Compos. Struct., vol. 156, pp. 78–92, 2016.
  • K. J. Bathe, Finite Element Procedures, Prentice hall, Englewood Cliffs.
  • E. Carrera, A. G. de Miguel and A. Pagani, “Extension of MITC to higher-order beam models and shear locking analysis for compact, thin-walled, and composite structures,” Int. J. Numer. Methods Eng., vol. 112, no. 13, pp. 1889–1908, 2017.
  • K. Washizu, “Some considerations on a naturally curved and twisted slender beam,” Stud. Appl. Math., vol. 43, no. 1-4, pp. 111–116, 1964.
  • E. Carrera, G. Giunta and S. Brischetto, “Hierarchical closed form solutions for plates bent by localized transverse loadings,” J. Zhejiang Univ. Sci. A, vol. 8, no. 7, pp. 1026–1037, 2007.
  • E. Carrera and G. Giunta, “Hierarchical models for failure analysis of plates bent by distributed and localized transverse loadings,” J. Zhejiang Univ. Sci. A, vol. 9, no. 5, pp. 600–613, 2008.
  • A. G. de Miguel, G. De Pietro, E. Carrera, G. Giunta and A. Pagani, “Locking-free curved elements with refined kinematics for the analysis of composite structures,” Comput. Methods Appl. Mech. Eng., vol. 337, pp. 481–500, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.