242
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Crack analysis in magneto-electro-elastic solids by gradient theory

, &
Pages 1354-1371 | Received 26 Jun 2018, Accepted 11 Aug 2018, Published online: 08 Dec 2018

References

  • J. M. Hu, T. Nan, N. X. Sun, and L. Q. Chen, “Multiferroic magnetoelectric nanostructures for novel device applications,” MRS Bulletin, vol. 40, no. 09, pp. 728–735, 2015.
  • Y. H. Chu et al., “Ferroelectric size effects in multiferroic BiFeO3 thin films,” Appl. Phys. Lett., vol. 90, no. 25, pp. 252906, 2007.
  • V. V. Shvartsman, A. Y. Emelyanov, A. L. Kholkin, and A. Safari, “Local hysteresis and grain size effects in Pb)Mg1/3Nb2/3)O-SbTiO3,” Appl. Phys. Lett., vol. 81, no. 1, pp. 117–119, 2002.
  • S. Buhlmann, B. Dwir, J. Baborowski, and P. Muralt, “Size effects in mesiscopic epitaxial ferroelectric structures: increase of piezoelectric response with decreasing feature-size,” Appl. Phys. Lett., vol. 80, pp. 3195–3197, 2002.
  • L. E. Cross, “Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients,” J. Mater. Sci., vol. 41, no. 1, pp. 53–63, 2006.
  • J. Harden et al., “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett, vol. 97, no. 15, pp. 157802, 2006.
  • W. Zhu, J. Y. Fu, N. Li, and L. E. Cross, “Piezoelectric composite based on the enhanced flexoelectric effects,” Appl. Phys. Lett., vol. 89, no. 19, pp. 192904, 2006.
  • S. Baskaran, X. He, Q. Chen, and J. F. Fu, “Experimental studies on the direct flexoelectric effect in alpha-phase polyvinylidene fluoride films,” Appl. Phys. Lett., vol. 98, no. 24, pp. 242901, 2011.
  • G. Catalan et al., “Flexoelectric rotation of polarization in ferroelectric thin films,” Nat. Mater., vol. 10, no. 12, pp. 963–967, 2011.
  • S. L. Hu, and S. P. Shen, “Electric field gradient theory with surface effect for nano-dielectrics,” CMC, vol. 13, pp. 63–87, 2009.
  • S. P. Shen, and S. L. Hu, “A theory of flexoelectricity with surface effect for elastic dielectrics,” J. Mech. Phys. Solids, vol. 58, no. 5, pp. 665–677, 2010.
  • G. A. Maugin, “The method of virtual power in continuum mechanics: Applications to coupled fields,” Acta Mechanica, vol. 35, no. 1–2, pp. 1–80, 1980.
  • X. Liang, S. Hu, and S. Shen, :Bernoulli-Euler dielectric beam model based on strain-gradient effect,” ASME J. Appl. Mech., vol. 80, no. 4, pp. 044502–044506, 2013.
  • J. Sladek, V. Sladek, P. Stanak, C. Zhang, and C. L. Tan, “Fracture mechanics analysis of size-dependent piezoelectric solids,” Int. J. Solids Struct., vol. 113–114, pp. 1–9, 2017.
  • B. Arash, and Q. Wang, “A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes,” Comput. Mater. Sci., vol. 51, no. 1, pp. 303–313, 2012.
  • S. Hosseini-Hashemi, M. Zare, and R. Nazemnezhad, “An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity,” Comp. Struct., vol. 100, pp. 290–299, 2013.
  • L. L. Ke, and Y. S. Wang, “Thermo-electric-mechanical vibration of the piezoelectric nanobeams based on the nonlocal theory,” Smart Mater. Struct., vol. 21, no. 2, pp. 025018, 2012.
  • C. Liu, L.-L. Ke, Y.-S. Wang, J. Yang, and S. Kitipornchai, “Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory,” Comp. Struct., vol. 106, pp. 167–174, 2013.
  • J. Sladek, V. Sladek, S. Hrcek, and E. Pan, “The nonlocal and gradient theories for large deformation of piezoelectric nanoplates,” Comp. Struct., vol. 172, pp. 119–129, 2017.
  • S. M. Kogan, “Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals,” Sov. Phys. Solid State, vol. 5, pp. 2069–2070, 1964.
  • R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett, vol. 22, no. 18, pp. 918–921, 1969.
  • P. Sharma, R. Maranganti, and N. D. Sharma, “Electromechanical coupling in nanopiezoelectric materials due to nanoscale nonlocal size effects: Green function solution and embedded inclustions,” Phys. Rev. B, vol. 74, no. 1, pp. 014110, 2006.
  • L. Tian, and R. K. N. D. Rajapakse, “Finite element modelling of nanoscale inhomogeneities in an elastic matrix,” Comput. Mater. Sci., vol. 41, no. 1, pp. 44–53, 2007.
  • R. E. Miller, and V. B. Shenoy, “Size-dependent elastic properties of nanosized structural elements,” Nanotechnology, vol. 11, no. 3, pp. 139–147, 2000.
  • X. J. Xu, Z. C. Deng, K. Zhang, and J. M. Meng, “Surface effects on the bending, buckling and free vibration analysis of magneto-electro-elastic beams,” Acta Mech, vol. 227, no. 6, pp. 1557–1573, 2016.
  • L. L. Ke, Y. S. Wang, J. Yang, and S. Kitipornchai, “Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory,” Acta Mech. Sinica, vol. 30, no. 4, pp. 516–525, 2014.
  • L. L. Ke, and Y. S. Wang, “Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory,” Physica E, vol. 63, pp. 52–61, 2014.
  • Y. S. Li, Z. Y. Cai, and S. Y. Shi, “Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory,” Comp. Struct., vol. 111, pp. 522–529, 2014.
  • N. Jamia, S. El-Borgi, M. Rekik, and S. Usman, “Investigation of the behavior of a mixed-mode crack in a functionally graded magneto-electro-elastic material by use of the non-local theory,” Theor. Appl. Fract. Mech., vol. 74, pp. 126–142, 2014.
  • F. Ebrahimi, and A. Dabbagh, “On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory,” Comp. Struct., vol. 162, pp. 281–293, 2017.
  • A. Farajpour, M. R. Hairi Yazdi, A. Rastgoo, M. Loghmani, and M. Mohammadi, “Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates,” Comp. Struct., vol. 140, pp. 323–336, 2016.
  • H. Askes, and E. C. Aifantis, “Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results,” Int. J. Solids Struct., vol. 48, no. 13, pp. 1962–1990, 2011.
  • I. Gitman, H. Askes, E. Kuhl, and E. Aifantis, “Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity,” Int. J. Solids Struct., vol. 47, no. 9, pp. 1099–1107, 2010.
  • S. T. Yaghoubi, S. M. Mousavi, and J. Paavola, “Buckling of centrosymmetric anisotropic beam structures within strain gradient elasticity,” Int. J. Solids Struct., vol. 109, pp. 84–92, 2017.
  • M. Wünsche, et al., “The influences of non-linear electrical, magnetic and mechanical boundary conditions on the dynamic intensity factors of magnetoelectroelastic solids,” Eng. Fract. Mech., vol. 97, pp. 297–313, 2013.
  • A. Beheshti, “Finite element analysis of plane strain solids in strain-gradient elasticity,” Acta Mech., vol. 228, no. 10, pp. 3543–3559, 2017.
  • L. Tian, and R. K. N. D. Rajapakse, “Fracture analysis of magnetoelectroelastic solids by using path independent integrals,” Int. J. Fract., vol. 131, no. 4, pp. 311–335, 2005.
  • M. S. Majdoub, P. Sharma, and T. Cagin, “Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect,” Phys. Rev. B, vol. 77, pp. 1–9, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.