1,009
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Determination of the effective elastic properties of titanium lattice structures

, ORCID Icon, &
Pages 1966-1982 | Received 04 Oct 2018, Accepted 08 Oct 2018, Published online: 18 Jan 2019

References

  • R. S. Kumar and D. L. McDowell, Multifunctional design of two-dimensional cellular materials with tailored mesostructure, Int. J. Solids Struct., vol. 46, no. 14–15, pp. 2871–2885, 2009.
  • L. Murr et al., Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science, J. Mater. Res. Technol., vol. 1, no. 1, pp. 42–54, 2012.
  • T. Schaedler et al., Ultralight metallic microlattices, J. Mater. Res. Technol., vol. 334, no. 6058, pp. 962–965, 2011.
  • L. Gibson, M. Ashby, G. Schajer, and C. Robertson, Mechanics of two-dimensional cellular materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., vol. 382, no. 1782, pp. 25–42, 1982.
  • P. Heinl, L. Muller, C. Korner, R. Singer, and F. Muller, Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomater., vol. 4, no. 5, pp. 1536–1544, 2008.
  • P. Onck, E. Andrews, and L. Gibson, Size effects in ductile cellular solids part I: Modeling, Int. J. Mech. Sci., vol. 43, no. 3, pp. 681–699, 2001.
  • E. Andrews, G. Gioux, P. Onck, and L. Gibson, Size effects in ductile cellular solids part II: Experimental results, Int. J. Mech. Sci., vol. 43, no. 3, pp. 701–713, 2001.
  • V. Deshpande, M. Ashby, and N. Fleck, Foam topology bending versus stretching dominated architectures, Acta Mater., vol. 49, no. 6, pp. 1035–1040, 2001.
  • M. Ashby, T. Evans, N. A. Fleck, J. W. Hutchinson, H. N. G. Wadley, and L. J. Gibson, Metal Foams: A Design Guide. Elsevier, 2000.
  • S. Bremen, W. Meiners, and A. Diatlov, Selective laser melting, Laser Technik J., vol. 9, no. 2, pp. 33–38, 2012.
  • H. Altenbach and A. Oechsner, Cellular and Porous Materials in Structures and Processes. Springer Science & Business Media, Berlin, 2011.
  • M. Ashby, The properties of foams and lattices, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 15–30, 2006.
  • Y. Shen, S. Mckown, S. Tsopanos, C. Sutcliffe, R. Mines, and W. Cantwell, The mechanical properties of sandwich structures based on metal lattice architectures, J. Sandwich Struct. Mater., vol. 12, no. 2, pp. 159–180, 2010.
  • O. Cansizoglu, O. Harrysson, D. Cormier, H. West, and T. Mahale, Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting, Mater. Sci. Eng. A, vol. 492, no. 1–2, pp. 468–474, 2008.
  • T. Niendrof, F. Brenne, and M. Schaper, Lattice structures manufactured by SLM: On the effect of geometrical dimensions on microstructure evolution during processing, Metall. Mater. Trans. B, vol. 45, pp. 1181–1185, 2014.
  • S. Ahmadi et al., Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties, Materials, vol. 8, no. 4, pp. 1871–1896, 2015.
  • L. Murr et al., Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., vol. 4, no. 7, pp. 1396–1411, 2011.
  • J. Kadkhodapour et al., Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell, J. Mech. Behav. Biomed. Mater., vol. 50, pp. 180–191, 2015.
  • S. L. Campanelli, N. Contuzzi, A. D. Ludovico, F. Caiazzo, F. Cardaropoli, and V. Sergi, Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting, Materials, vol. 7, no. 6, pp. 4803–4822, 2014.
  • V. Weimann, J. Wieding, H. Hansmann, N. Laufer, A. Wolf, and R. Bader, Specific yielding of selective Laser-Melted Ti6Al4V Open-Porous scaffolds as a function of unit cell design and dimensions, Metals - Open Access Metallurgy J., vol. 6, no. 7, pp. 166, 2016. https://doi.org/10.3390/met6070166.
  • C. Yan, L. Hao, A. Hussein, and P. Young, Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting, J. Mech. Behav. Biomed. Mater., vol. 51, pp. 61–73, 2015.
  • S. Ahmadi et al., Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behav. Biomed. Mater., vol. 34, pp. 106–115, 2014.
  • J. Sun, Y. Yang, and D. Wang, Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting, Advances in Mechanical Engineering, vol. 4, pp. 427–386, 2012.
  • L. Xiao, W. Song, C. Wang, H. Liu, H. Tang, and J. Wang, Mechanical behavior of open-cell rhombic dodecahedron Ti-6Al-4V lattice structure, Mater. Sci. Eng. A, vol. 640, pp. 375–384, 2015.
  • A. Yanez, A. Herrera, O. Martel, D. Monopoli, and H. Afonso, Compressive behaviour of gyroid lattice structures for humain cancellous bone implant applications, Mater. Sci. Eng. C, vol. 68, pp. 445–448, 2016.
  • M. Montemurro, A. Catapano, and D. Doroszewski, A multi-scale approach for the simultaneous shape and material optimisation of sandwich panels with cellular core, Composites Part B Eng., vol. 91, pp. 458–472, 2016.
  • E. Barbero, Finite Element Analysis of Composite Materials, CRC Press, Taylor & Francis Group, 2007.
  • B. Vayssette, N. Saintier, C. Brugger, M. Elmay, and E. Pessard, Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the high cycle fatigue life, Procedia Eng., vol. 213, pp. 89–97, 2018.
  • J. C. Maxwell, On the calculation of the equilibrium and stiffness of frames, The London, Edinburgh, and Dublin Philosop. Magazine J. Sci., vol. 27, no. 182, pp. 294–299, 1864.
  • M. Montemurro, H. Nasser, Y. Koutsawa, S. Belouettar, A. Vincenti, and P. Vannucci, Identification of electromechanical properties of piezoelectric structures through evolutionary optimisation techniques, Int. J. Solids Struct., vol. 49, no. 13, pp. 1884–1892, 2012.
  • A. Catapano and M. Montemurro, A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: Homogenisation of core properties, Composite Struct., vol. 118, pp. 664–676, 2014.
  • A. Catapano and M. Montemurro, A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimisation strategy, Composite Struct., vol. 118, pp. 677–690, 2014.
  • L. Cappelli, M. Montemurro, F. Dau, and L. Guillaumat, Characterisation of composite elastic properties by means of a multi-scale two-level inverse approach, Composite Struct., vol. 204, pp. 767–777, 2018.
  • Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, vol. 11, no. 2, pp. 127–140, 1963.
  • W. R. Zimmerman, Hashin-shtrikman bounds on the Poisson ratio of a composite material, Mech. Res. Commun., vol. 19, no. 6, pp. 563–569, 1992.
  • W. Voigt, Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper, Ann. Phys., vol. 274, no. 12, pp. 573–587, 1889.
  • A. Reuss, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle, J. Appl. Math. Mech., vol. 9, pp. 49–58, 1929.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.