231
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Large deformation mixed finite elements for smart structures

ORCID Icon
Pages 1983-1993 | Received 07 Aug 2018, Accepted 13 Oct 2018, Published online: 22 Jan 2019

References

  • G. A. Maugin, Continuum Mechanics of Electromagnetic Solids, Amsterdam, Elsevier, 1988.
  • P. A. Voltairas, D. I. Fotiadis, and C. V. Massalas, “A theoretical study of the hyperelasticity of electro-gels,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 459, no. 2037, pp. 2121–2130, 2003.
  • A. Dorfmann and R. W. Ogden, “Nonlinear electroelasticity,” Acta Mech., vol. 174, no. 3–4, pp. 167–183, 2005.
  • Z. Suo, X. Zhao, and W. H. Greene, “A nonlinear field theory of deformable dielectrics,” J. Mech. Phys. Solids, vol. 56, no. 2, pp. 467–486, 2008.
  • R. Bustamante, A. Dorfmann, and R. W. Ogden, “Nonlinear electroelastostatics: a variational framework,” Z. Angew. Math. Phys., vol. 60, no. 1, pp. 154–177, Jan. 2009.
  • A. Dorfmann and R. W. Ogden, “Nonlinear electroelastostatics: Incremental equations and stability,” Int. J. Eng. Sci. , vol. 48, no. 1, pp. 1–14, 2010.
  • R. Bustamante and J. Merodio, “Constitutive structure in coupled non-linear electro-elasticity: Invariant descriptions and constitutive restrictions,” Int. J. Non-Linear Mech., vol. 46, no. 10, pp. 1315–1323, 2011.
  • S. Skatulla, C. Sansour, and A. Arockiarajan, “A multiplicative approach for nonlinear electro-elasticity,” CMAME, vol. 245–246, pp. 243–255, 2012.
  • D. Zäh and C. Miehe, “Multiplicative electro-elasticity of electroactive polymers accounting for micromechanically-based network models,” CMAME, vol. 286, pp. 394–421, 2015.
  • D. K. Vu, P. Steinmann, and G. Possart, “Numerical modelling of non-linear electroelasticity,” Int. J. Numer. Meth. Eng., vol. 70, no. 6, pp. 685–704, 2007.
  • D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, volume 44 of Springer Series in Computational Mathematics. Heidelberg: Springer, 2013.
  • K. Y. Sze, L. Q. Yao, and S. Yi, “A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part II-smart structure modelling,” Int. J. Numer. Meth. Eng., vol. 48, no. 4, pp. 565–582, 2000.
  • S. Klinkel and W. Wagner, “A geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulation,” Int. J. Numer. Methods Eng., vol. 65, no. 3, pp. 349–382, 2006.
  • S. Klinkel, S. Zwecker, and R. Müller, “A solid shell finite element formulation for dielectric elastomers,” J. Appl. Mech., vol. 80, no. 2, pp. 021026, 2013.
  • M. Krommer, Y. Vetyukov, and E. Staudigl, “Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behaviour,” Smart Struct. Syst., vol. 18, no. 1, pp. 155–181, 2016.
  • K. Y. Sze and Y. S. Pan, “Hybrid finite element models for piezoelectric materials,” J. Sound Vibr., vol. 226, no. 3, pp. 519–547, 1999.
  • R. Ortigosa and A. J. Gil, “A new framework for large strain electromechanics based on convex multi-variable strain energies: Finite element discretisation and computational implementation,” CMAME, vol. 302, pp. 329–360, 2016.
  • A. Pechstein and J. Schöberl, “Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity,” Math. Models Meth. Appl. Sci., vol. 21, no. 08, pp. 1761–1782, 2011.
  • A. S. Pechstein and J. Schöberl, “An analysis of the TDNNS method using natural norms,” Numer. Math., vol. 139, no. 1, pp. 93–120, 2018.
  • A. Pechstein and J. Schöberl, “Anisotropic mixed finite elements for elasticity,” Int. J. Numer. Methods Eng., vol. 90, no. 2, pp. 196–217, 2012.
  • A. Sinwel, “A new family of mixed finite elements for elasticity,” Ph.D. thesis, Johannes Kepler University Linz, 2009. Published by Südwestdeutscher Verlag für Hochschulschriften, June 2009.
  • A. S. Pechstein, M. Meindlhumer, and A. Humer, “New mixed finite elements for the discretization of piezoelectric structures or macro-fiber composites,” J. Intell. Mat. Syst. Struct., vol. 29, no. 16, pp. 3266–3283, 2018.
  • K.-J. Bathe, E. Ramm, and E. L. Wilson, “Finite element formulations for large deformation dynamic analysis,” Int. J. Numer. Meth. Eng., vol. 9, no. 2, pp. 353–386, 1975.
  • S. Léger, A. Fortin, C. Tibirna, and M. Fortin, “An updated lagrangian method with error estimation and adaptive remeshing for very large deformation elasticity problems,” Int. J. Numer. Meth. Eng., vol. 100, no. 13, pp. 1006–1030, 2014.
  • S. Leger and A. Pepin, “An updated lagrangian method with error estimation and adaptive remeshing for very large deformation elasticity problems: the three-dimensional case,” CMAME, vol. 309, pp. 1–18, 2016.
  • S. Zaglmayr, “High order finite elements for electromagnetic field computation,” Ph.D. thesis, Johannes Kepler University Linz, 2006. http://www.numa.uni-linz.ac.at/Teaching/PhD/Finished/zaglmayr.
  • Netgen/NGSolve. https://ngsolve.org/. Accessed: Feb. 26, 2018.
  • E. Staudigl, M. Krommer, and Y. Vetyukov, “Finite deformations of thin plates made of dielectric elastomers: Modeling, numerics, and stability,” J. Intell. Mater. Syst. Struct., vol. 472, pp. 20160170, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.