606
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Modeling and simulation of an open channel PEHF system for efficient PVDF energy harvesting

, , , & ORCID Icon
Pages 812-826 | Received 12 Jul 2018, Accepted 19 Mar 2019, Published online: 11 Apr 2019

References

  • L. Xiong, L. Tang, H. Ding, L. Chen, and B. Mace, Broadband performance of a piezoelectric energy harvester based on the internal resonance of buckled beam. In: Active and Passive Smart Structures and Integrated Systems, International Society for Optics and Photonics, Bellingham, WA, vol. 9799, pp. 97993O, 2016.
  • R. Pudur, V. Hanumante, S. Shukla, and K. Kumar, Wireless power transmission: A survey. International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, 2014, pp. 1–6. doi:10.1109/ICRAIE.2014.6909283.
  • A. Erturk, J. Hoffmann, and D. J. Inman, “The energy harvesting potential of piezoaeroelastic systems”, Appl. Phys. Lett., vol. 96, no. 18, pp. 184103, 2010. DOI: 10.1063/1.3427405.
  • E. Lefeuvre, C. Adrien Badel, D. Richard, and D. Guyomar, “Energy harvesting using piezoelectric materials: Case of random vibrations”, J. Electroceram., vol. 19, no. 4, pp. 349–355, 2007. DOI: 10.1007/s10832-007-9051-4.
  • H. Shen, J. Qiu, and M. Balsi, “Vibration damping as a result of piezoelectric energy harvesting”, Sens. Actuators A Phys., vol. 169, no. 1, pp. 178–186, 2011. DOI: 10.1016/j.sna.2011.04.043.
  • K. Akoussan, H. Boudaoud, E. M. Daya, and E. Carrera, “Vibration modeling of multilayer composite structures with viscoelastic layers”, Mech. Adv. Mater. Struct., vol. 22, no. 1–2, pp. 136–149, 2015. DOI: 10.1080/15376494.2014.907951.
  • H. L. Ji, J. Qiu, and Y. Ma, “Optimal design of high efficiency piezoelectric energy harvester”, Opt. Precision Eng., vol. 12, pp. 2346–2351, 2008.
  • H. A. Sodano, D. J. Inma, and G. Park, “A review of power harvesting from vibration using piezoelectric materials”, Shock Vib. Digest, vol. 36, no. 3, pp. 197–206, 2004. DOI: 10.1177/0583102404043275.
  • D. Dondi, A. Bertacchini, L. Larcher, P. Pavan, D. Brunelli, and L. Benini, A solar energy harvesting circuit for low power applications, 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, 2008, pp. 945–949. doi: 10.1109/ICSET.2008.4747143
  • J. Wang, S. Wen, X. Zhao, M. Zhang, and J. Ran, “Piezoelectric wind energy harvesting from self-excited vibration of square cylinder”, J. Sens., vol. 2016, pp. 2353517, 2016. DOI: 10.1155/2016/2353517.
  • D. Chhabra, G. Bhushan, and P. Chandna, “Optimization of collocated/noncollocated sensors and actuators along with feedback gain using hybrid multiobjective genetic algorithm-artificial neural network”, Chin. J. Eng., vol. 2014, pp. 1, 2014. DOI: 10.1155/2014/692140.
  • A. Benjeddou, “New insights in piezoelectric free-vibrations using simplified modeling and analyses”, Smart Struct. Syst., vol. 5, no. 6, pp. 591–612, 2009. DOI: 10.12989/sss.2009.5.6.591.
  • A. Benjeddou, “Piezoelectric and viscoelastic constrained layer-based vibration control: Numerical developments and performance evaluation”, CD-ROM Proc. Active, vol. 2002, ISVR, Southampton, UK, paper 223, pp. 875–886, 2002.
  • S. Bandyopadhyay, and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor”, IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, 2009. DOI: 10.1109/JSSC.2012.2197239.
  • X. D. Xie, Q. Wang, and N. Wu, “Energy harvesting from transverse ocean waves by a piezoelectric plate”, Int. J. Eng. Sci., vol. 81, pp. 41–48, 2014. DOI: 10.1016/j.ijengsci.2014.04.003.
  • H. A. Sodano, G. Park, D. J. Leo, and D. J. Inman, Use of piezoelectric energy harvesting devices for charging batteries, In: Smart Structures and Materials. Smart Sens. Technol. Meas. Syst., San Diego, California, United States, vol. 5050, pp. 101–109. International Society for Optics and Photonics, 2003. doi:10.1117/12.484247
  • H. Hu, Y. Hu, C. Chen, and J. Wang, “A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall”, IEEE Trans. Ultrasonics Ferroelectr. Frequency Control, vol. 55, no. 10, 2008.
  • H. A. Sodano, D. J. Inman, and G. Park, “Comparison of piezoelectric energy harvesting devices for recharging batteries”, J. Intell. Mater. Syst. Struct., vol. 16, no. 10, pp. 799–807, 2005. DOI: 10.1177/1045389X05056681.
  • H. A. Sodano, G. Park, and D. J. Inman, “An investigation into the performance of macro-fiber composites for sensing and structural vibration applications”, Mech. Syst. Signal Process., vol. 18, no. 3, pp. 683–697, 2004. DOI: 10.1016/S0888-3270(03)00081-5.
  • A. Erturk, and D. J. Inman, “A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters”, J. Vib. Acoust., vol. 130, no. 4, pp. 041002, 2008. DOI: 10.1115/1.2890402.
  • S. Michelin, and O. Doaré, “Energy harvesting efficiency of piezoelectric flags in axial flows”, J. Fluid Mech., vol. 714, pp. 489–504, 2013. DOI: 10.1017/jfm.2012.494.
  • A. Benjeddou, Modelling of piezoelectric adaptive beam, plate and shell structures: some developments and results, In: B. H. V. Topping and Z. Bitnar (Eds.), CD-ROM Proceedings of 6th International Conference on Computational Structure and Technology, Civil-Comp Press, Stirling, Scotland, Paper 81, 2002.
  • J. Yadav, and J. Dinesh, “Design of an open channel fluid flow system for piezoelectric energy harvesting”, Int. J. Latest Trends Eng. Technol., vol. 8, no. 4–1, pp. 244–249, 2017.
  • D. Chhabra, G. Bhushan, and P. Chandna, “Optimal placement of piezoelectric actuators on plate structures for active vibration control via modified control matrix and singular value decomposition approach using modified heuristic genetic algorithm”, Mech. Adv. Mater. Struct., vol. 23, no. 3, pp. 272–280, 2016. DOI: 10.1080/15376494.2014.949932.
  • D. Chhabra, K. Narwal, and P. Singh, “Design and analysis of piezoelectric smart beam for active vibration control”, Int. J. Adv. Res. Technol., vol. 1, no. 1, pp. 1–5, 2012.
  • F. Mokhtari, M. Latifi, M. Shamshirsaz, M. Khelghatdoost, and S. Rahmani, “Modeling of electrospun PVDF/LiCl nanogenerator by the energy approach method: determining piezoelectric constant”, J. Text. Inst., vol. 108, no. 11, pp. 1917–1925, 2017. DOI: 10.1080/00405000.2017.1300219.
  • T. Safwat, Z. Ounaies, and C. D. Rahn, Modeling and design of electromagnetic and piezoelectric chest strain energy harvesters including soft tissue effects, In: Active and Passive Smart Structures and Integrated Systems XII, International Society for Optics and Photonics, Bellingham, WA, Vol. 10595, p. 105951W, 2018.
  • S. R. Hong, S. B. Choi, Y. T. Choi, and N. M. Wereley, “A hydro-mechanical model for hysteretic damping force prediction of ER damper: experimental verification”, J. Sound Vib., vol. 285, no. 4–5, pp. 1180–1188, 2005. DOI: 10.1016/j.jsv.2004.10.031.
  • A. Benjeddou, Modelling and simulation of adaptive structures and composites: Current trends and future directions, In B. H. V. Topping and C. A. Mota Soares (Eds.), Progress in Computational Structure and Technology, Saxe-Coburg Publications, Stirling, Scotland, Chapter 10, pp. 251–280, 2004.
  • A. Erturk, and D. J. Inman, “Issues in mathematical modeling of piezoelectric energy harvesters”, Smart Mater. Struct., vol. 17, no. 6, pp. 065016, 2008. DOI: 10.1088/0964-1726/17/6/065016.
  • C. De Marqui, A. Erturk, D. Inman, and W. Vieira, “Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method”, J. Vib. Acoust., vol. 133, no. 1, pp. 011003, 2011. DOI: 10.1115/1.4002785.
  • R. K. Rajput, A Textbook of Hydraulic Machines (Fluid Mechanics and Hydraulic Machines-Part-II) in SI Units, 2008. S. Chand and company Limited, New Delhi.
  • R. K. Bansal, A Text Book of Fluid Mechanics and Hydraulic Machines in MKS and SI Units. Laxmi Publications, Chennai, India, 1989.
  • A. Erturk, and D. J. Inman, Piezoelectric Energy Harvesting. John Wiley & Sons, Hoboken, NJ, 2011.
  • S. R. Anton, and H. A. Sodano, “A review of power harvesting using piezoelectric materials”, Smart Mater. Struct., vol. 16, no. 3, 2007.
  • K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, “Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems”, Smart Mater. Struct., vol. 17, no. 4, pp. 043001, 2008. DOI: 10.1088/0964-1726/17/4/043001.
  • H. D. Akaydin, N. Elvin, and Y. Andreopoulos, “Energy harvesting from highly unsteady fluid flows using piezoelectric materials”, J. Intell. Mater. Syst. Struct., vol. 21, no. 13, pp. 1263–1278, 2010. DOI: 10.1177/1045389X10366317.
  • Y. C. Shu, and I. C. Lien, “Analysis of power output for piezoelectric energy harvesting systems”, Smart Mater. Struct., vol. 15, no. 6, pp. 1499, 2006. DOI: 10.1088/0964-1726/15/6/001.
  • P. Dineva, P. S. Gross, D. Muller, and T. Rangelov, Dynamic Fracture of Piezoelectric Materials: Solution of Time-Harmonic Problems via Biem, Springer Science & Business Media, Berlin, Germany, vol. 212, 2014.
  • C. D. M. Junior, A. Erturk, and D. J. Inman, “An electromechanical finite element model for piezoelectric energy harvester plates”, J. Sound Vib., vol. 327, pp. 9–25, 2009. DOI: 10.1016/j.jsv.2009.05.015.
  • V. K. Mehta, Principles of electronics. S. Chand., 2005.
  • J. C. Salmon, “Circuit topologies for single-phase voltage-doubler boost rectifiers”, IEEE Transactions on Power Electronics, vol. 8, no. 4, pp. 521–529, 1993. DOI: 10.1109/63.261023.
  • Y. K. Ramadass, and A. P. Chandrakasan, “An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor”, IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp. 189–204, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.