514
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Fatigue crack propagation at aeronautic engine vane guides using the extended finite element method (XFEM)

, , &
Pages 861-873 | Received 23 Jan 2019, Accepted 19 Mar 2019, Published online: 11 Apr 2019

References

  • Fatigue Failures, Failure Analysis and Prevention, ASM Handbook, ASM International, pp. 11, 2002. DOI: 10.31399/asm.hb.v11.a0003544
  • D.W. Hoeppner, Industrial Significance of Fatigue Problems, ASM Handbook, Fatigue and Fracture, Vol. 1, pp. 19, 1996. DOI: 10.31399/asm.hb.v19.9781627081931
  • A. McEvely, Failures in inspection procedures: Case studies, Eng. Fail. Anal., vol. 11, pp. 167–176, 2004.
  • S.K. Chan and I.S. Tuba, A finite element method for contact problems for solid bodies – Part II: Applications to turbine blade fastenings, Int. J. Mech. Sci., vol. 13, no. 7, pp. 627–639, 1971. DOI: 10.1016/0020-7403(71)90033-6.
  • J. Tian, X. Liu, and S. Chen, Fracture analysis on compressor blades, Int. J. Fatigue, vol. 13, no. 4, pp. 333–336, 1991. DOI: 10.1016/0142-1123(91)90361-2.
  • M. Masataka, Root and groove contact analysis for steam turbine blades, Jpn. Soc. Mech. Eng. J., vol. 35, pp. 508–514, 1992.
  • G. Zboinski, Physical and geometrical non-linearities in contact problems of elastic turbine blade attachments, J. Mech. Eng. Sci., vol. 209, pp. 273–286, 1995. DOI: 10.1243/PIME_PROC_1995_209_154_02.
  • K.W. Barlow and R. Chandra, Fatigue crack propagation simulation in aircraft engine fan blade attachment, Int. J. Fatigue, vol. 27, no. 10–12, pp. 1661–1668, 2005. DOI: 10.1016/j.ijfatigue.2005.06.016.
  • M.I.I. Hammouda, R.A. Pasha, and A.S. Fayed, Modelling of cracking sites/development in axial dovetail joints, Int. J. Fatigue, vol. 29, no. 1, pp. 30–48, 2007. DOI: 10.1016/j.ijfatigue.2006.02.049.
  • L.J. Kirthan, R. Hegde, B.S. Suresh, and R. Girish Kumar, Computational analysis of fatigue crack growth based on stress intensity factor approach in axial flow compressor blades, Proc. Mater. Sci., vol. 5, pp. 387–397, 2014. DOI: 10.1016/j.mspro.2014.07.281.
  • O. A. Abu, S. Eshati, P. Laskaridis, and R. Singh, Aero-engine turbine blade life assessment using the Neu/Sehitoglu damage model, Int. J. Fatigue, vol. 61, pp. 160–169, 2014. DOI: 10.1016/j.ijfatigue.2013.11.015.
  • D. Sandberg, R. Mansour, and M. Olsson, Fatigue probability assessment including aleatory and epistemic uncertainty with application to gas turbine compressor blades, Int. J. Fatigue, vol. 95, pp. 132–142, 2017. DOI: 10.1016/j.ijfatigue.2016.10.001.
  • P. Papanikos, S. A. Meguid, and Z. Stjepanovic, Three dimensional nonlinear finite element analysis of dovetail joints in aero-engine discs, Finite Element Anal. Des., vol. 29, no. 3/4, pp. 173–186, 1998. DOI: 10.1016/S0168-874X(98)00008-0.
  • S.A. Meguid, P.S. Kanth, and A. Czekanski, Finite element analysis of fir-tree region in turbine disk, Finite Element Anal. Des., vol. 35, no. 4, pp. 305–317, 2000. DOI: 10.1016/S0168-874X(99)00072-4.
  • W.Z. Zhuang, Prediction of crack growth from bolt holes in a disc, Int. J. Fatigue, vol. 22, no. 3, pp. 241–250, 2000. DOI: 10.1016/S0142-1123(99)00122-X.
  • V. Shlyannikov, B. Iltchenko, and N. Stepanov, Fracture analysis of turbine disks and computational-experimental background of the operational decisions, Eng. Fail. Anal., vol. 8, no. 5, pp. 461–475, 2001. DOI: 10.1016/S1350-6307(00)00041-8.
  • V. Shlyannikov, A. Zakharov, and R. Yarullin, Structural integrity assessment of turbine disk on a plastic stress intensity factor basis, Int. J. Fatigue, vol. 92, pp. 234–245, 2016. DOI: 10.1016/j.ijfatigue.2016.07.016.
  • J. Hou, R. Wescott, and M. Attia, Prediction of fatigue crack propagation lives of turbine discs with forging-induced initial cracks, Eng. Fracture Mech., vol. 131, pp. 406–418, 2014. DOI: 10.1016/j.engfracmech.2014.08.015.
  • L. B. Getsov, A. S. Semenov, and I. Ignatovich, Thermal fatigue analysis of turbine discs on the base of deformation criterion, Int. J. Fatigue, vol. 97, pp. 88–97, 2017. DOI: 10.1016/j.ijfatigue.2016.12.018.
  • A. Wholer, Versuche über die Festigkeit der Eisenbahn Wagenachsen Zeitschrift für Bauwesen, summarized in English in Engineering, 4, August 23rd, 1867. pp 160–161, 1860.
  • A. Whöler, Über die Festigkeitsversuche mit Eisen und Stahl, Zeitschrift für Bauwesen, vol. 20, pp. 73–106, 1870.
  • A.A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. R Soc. Lond. A, vol. 221, no. 582–593, pp. 163–198, 1921. DOI: 10.1098/rsta.1921.0006.
  • G. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., vol. 24, pp. 361–364, 1957.
  • R.T. Anderson, T.J. DeLacy, and R. Stewart. Detection of fatigue cracks by nondestructive testing methods, Report No. GDCA-DBG73-002, Convair Aerospace Division of General Dynamics, San Diego, California, 1973.
  • T. Belytschko, and T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng., vol. 45, no. 5, pp. 601–620, 1999. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
  • N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., vol. 46, no. 1, pp. 131–150, 1999. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  • N. Sukumar, N. Moës, B. Moran, and T. Belytschko, Extended finite element method for three-dimensional crack modelling, Int. J. Numer. Methods Eng., vol. 48, no. 11, pp. 1549–1570, 2000. DOI: 10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A.
  • H. Pathak, A. Singh, and I.V. Singh, Fatigue crack growth simulations of 3-D problems using XFEM, Int. J. Mech. Sci., vol. 76, pp. 112–131, 2013. DOI: 10.1016/j.ijmecsci.2013.09.001.
  • I.V. Singh, B.K. Mishra, S. Bhattacharya, and R.U. Patil, The numerical simulation of fatigue crack growth using the extended finite element method, Int. J. Fatigue, vol. 36, no. 1, pp. 109–119, 2012. DOI: 10.1016/j.ijfatigue.2011.08.010.
  • F. Farukh, L. Zhao, R. Jiang, P. Reed, D. Proprentner, and B. Shollock, Fatigue crack growth in a nickel-based superalloy at elevated temperature – Experimental studies, viscoplasticity modelling and XFEM predictions, Mech. Adv. Mater. Mod. Process., vol. 1, no. 2, pp. 1–13, 2015.
  • L. Bouhala, A. Makradi, and S. Belouettar, Thermo-anisotropic crack propagation by XFEM, Int. J. Mech. Sci., vol. 103, pp. 235–246, 2015. DOI: 10.1016/j.ijmecsci.2015.09.014.
  • J. Jaskowiec, P. Plucinski, and J. Pamin, Thermo-mechanical XFEM-type modeling of laminated structure with thin inner layer, Eng. Struct., vol. 100, pp. 511–521, 2015. DOI: 10.1016/j.engstruct.2015.06.035.
  • H. Pathak, R.K. Mishra, A. Singh, and I.V. Singh, Simulation of 3D cracks under thermo-mechanical environment, Mater. Today Proc., vol. 4, pp. 10259–10263, 2017. DOI: 10.1016/j.matpr.2017.06.360.
  • S. Bhattacharya, and K. Sharma, Fatigue crack growth simulations of FGM plate under cyclic thermal load by XFEM, Proc. Eng., vol. 86, pp. 727–731, 2014. DOI: 10.1016/j.proeng.2014.11.091.
  • D.M. Grogan, S.B. Leen, and C.M. Ó Brádaigh, An XFEM-based methodology for fatigue delamination and permeability of composites, Compos. Struct., vol. 107, pp. 205–218, 2014. DOI: 10.1016/j.compstruct.2013.07.050.
  • M. Pant, K. Sharma, and S. Bhattacharya, Application of EFGM and XFEM for fatigue crack growth analysis of functionally graded materials, Proc. Eng., vol. 173, pp. 1231–1238, 2017. DOI: 10.1016/j.proeng.2016.12.135.
  • E. Giner, N. Sukumar, F.D. Denia, and F.J. Fuentemayor, Extended finite element method for fretting fatigue crack propagation, Int. J. Solids Struct., vol. 45, no. 22/23, pp. 5675–5687, 2008. DOI: 10.1016/j.ijsolstr.2008.06.009.
  • M.C. Baietto, E. Pierres, A. Gravouil, B. Berthel, S. Fouvry, and B. Trolle, Fretting fatigue crack growth simulation based on a combined experimental and XFEM strategy, Int. J. Fatigue, vol. 47, pp. 31–43, 2013. DOI: 10.1016/j.ijfatigue.2012.07.007.
  • H. Zhang, J. Liu, and Z. Zuo, Investigation into the effects of tangential force on fretting fatigue based on XFEM, Tribol. Int., vol. 99, pp. 23–28, 2016. DOI: 10.1016/j.triboint.2016.03.003.
  • ASTM E647-13ae1, Standard test method for measurement of fatigue crack growth rates,” ASTM International, West Conshohocken, PA, 2013.
  • 2136-01 Certified Materials, Test Report, Special Metals Corporation, 2014.
  • Special Metals Corporation (www.specialmetals.com), Publication Number SMC-045, 2007.
  • J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., vol. 35, no. 2, pp. 379–386, 1968. DOI: 10.1115/1.3601206.
  • C. Atkinson, and J.D. Eshelby, The flow of energy into the tip of a moving crack, Int. J. Appl. Mech., vol. 4, pp. 3–8, 1968.
  • Cambridge Engineering Selector. CES 4.5 Granta Design Ltd. Cambridge 2004, UK.
  • A. Bergara, J.I. Dorado, A. Martin-Meizoso, and J.M. Martínez-Esnaola, Fatigue crack growth in complex stress fields: Experiments and numerical simulations using the extended finite element method (XFEM), Int. J. of Fatigue, vol. 103, pp. 112–121, 2017. DOI: 10.1016/j.ijfatigue.2017.05.026.
  • J. Zuo, X. Deng, M.A. Sutton, and C.S. Cheng, Crack tunneling: Effect of stress constraint, Proceedings of IMECE04, 2004 ASME International Mechanical Engineering Congress, November 13–20, 2004, Anaheim, California, USA.
  • M.A. James, and J.C. Newman, The effect of crack tunneling on crack growth: Experiments and CTOA analyses, Eng. Fract. Mech., vol. 70, no. 3/4, pp. 457–468, 2003. DOI: 10.1016/S0013-7944(02)00131-5.
  • H.F. Hardrath, B.C. Utley, and D.E. Guthrie, Rotating-beam fatigue tests of notched and unnotched 7075-T6 aluminum-alloy specimens under stresses of constant and varying amplitudes, NACA Technical Note D 210, 1959.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.