84
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of different theories about size dependency effect on the resonant frequency of an AFM subjected to van der Waals force

, &
Pages 1621-1632 | Received 29 Aug 2019, Accepted 21 Nov 2019, Published online: 10 Dec 2019

References

  • S. M. Lin, “Analytical solutions of the frequency shifts of several modes in dynamic force microscopy Subjected to AC electrostatic force,” IEEE Trans. Nanotechnol., vol. 6, no. 4, pp. 404–412, 2007. DOI: 10.1109/TNANO.2007.900497.
  • S. M. Lin and C. C. Lin, “Phase shifts and energy dissipations of several modes of AFM: minimizing topography and dissipation measurement errors,” Precision Eng., vol. 33, no. 4, pp. 371–377, 2009. DOI: 10.1016/j.precisioneng.2008.10.005.
  • S. M. Lin, C. T. Liauh, W. R. Wang, and S. H. Ho, “Analytical solutions of the first three frequency shifts of AFM non-uniform probe subjected to the Lennard-Jones force,” Ultramicroscopy, vol. 106, no. 6, pp. 508–515, 2006. DOI: 10.1016/j.ultramic.2006.01.005.
  • S. M. Lin, “Energy dissipation and frequency shift of dynamic force microscopy with structural damping,” Ultramicroscopy, vol. 106, no. 6, pp. 516–524, 2006. DOI: 10.1016/j.ultramic.2006.01.004.
  • S. M. Lin, “Exact Solution of the frequency shift in dynamic force microscopy,” Appl. Surf. Sci., vol. 250, no. 1-4, pp. 228–237, 2005. DOI: 10.1016/j.apsusc.2005.01.003.
  • S. M. Lin, C. T. Liauh, W. R. Wang, and S. H. Ho, “Analytical solutions of the frequency shifts of several modes in non-uniform probes scanning an inclined surface, subjected to the Lennard-Jones force,” Int. J. Solids Struct., vol. 44, no. 3-4, pp. 799–810, 2007. DOI: 10.1016/j.ijsolstr.2006.05.024.
  • M. H. Korayem, A. Kavousi, and N. Ebrahimi, “Dynamic analysis of tapping-mode AFM considering capillary force interactions,” Sci. Iran., vol. 18, no. 1, pp. 121–129, 2011. DOI: 10.1016/j.scient.2011.03.014.
  • D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • A. W. McFarland, and J. S. Colton, “Role of material microstructure in plate stiffness with relevance to microcantilever sensors,” J. Micromech. Micro-Eng., vol. 15, no. 5, pp. 1060–1067, 2005. DOI: 10.1088/0960-1317/15/5/024.
  • R. Mindlin and H. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Ration. Mech. Anal., vol. 11, no. 1, pp. 415–448, 1962. DOI: 10.1007/BF00253946.
  • R. A. Toupin, “Elastic materials with couple-stresses,” Arch. Ration. Mech. Anal., vol. 11, no. 1, pp. 385–414, 1962. DOI: 10.1007/BF00253945.
  • F. Yang, A. Chong, D. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • R. A. Alashti, and A. H. Abolghasemi, “A size-dependent Bernoulli-Euler beam formulation based on a new model of couple stress theory,” I. J. Eng., vol. 27, no. 6, pp. 951–960, 2014.
  • S. M. Lin, C. L. Tsai, and H. C. Lee, “Effects of size dependency and axial deformation on the dynamic behavior of an AFM subjected to van der Waals force based on the modified couple stress theory,” Precision Eng., vol. 56, pp. 203–210, 2019. DOI: 10.1016/j.precisioneng.2018.12.001.
  • S. M. Lin, and C. Y. Chang, “Resonance-size parameter relationship and dynamics of an AFM subjected to multi-mode excitation and based on the modified couple stress theory,” Math. Problem Eng., vol. 2019, pp. 3147863, pp. 10, 2019. DOI: 10.1155/2019/3147863.
  • A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • J. N. Reddy, “Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates,” Int. J. Eng. Sci., vol. 48, no. 11, pp. 1507–1518, 2010. DOI: 10.1016/j.ijengsci.2010.09.020.
  • Ö. Civalek, and Ç. Demir, “Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory,” Appl. Math. Model., vol. 35, no. 5, pp. 2053–2067, 2011. DOI: 10.1016/j.apm.2010.11.004.
  • T. Murmu and S. Adhikari, “Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems,” Eur. J. Mech. A Solids, vol. 34, pp. 52–62, 2012. DOI: 10.1016/j.euromechsol.2011.11.010.
  • H. T. Thai, “A nonlocal beam theory for bending, buckling, and vibration of nanobeams,” Int. J. Eng. Sci., vol. 52, pp. 56–64, 2012. DOI: 10.1016/j.ijengsci.2011.11.011.
  • B. Gheshlaghi, and Y. Mirzaei, “Flexural sensitivity and resonance of cantilever micro-sensors based on nonlocal elasticity theory,” Opt. Commun., vol. 285, no. 12, pp. 2798–2801, 2012. DOI: 10.1016/j.optcom.2012.01.050.
  • K. Kiani, “Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories,” Int. J. Mech. Sci., vol. 68, pp. 16–34, 2013. DOI: 10.1016/j.ijmecsci.2012.11.011.
  • N. A. Fleck and J. W. Hutchinson, “Phenomenological theory for strain gradient effects in plasticity,” J. Mech. Phys. Solids, vol. 41, no. 12, pp. 1825–1857, 1993. DOI: 10.1016/0022-5096(93)90072-N.
  • S. Kong, S. Zhou, Z. Nie, and K. Wang, “Static and dynamic analysis of microbeams based on strain gradient elasticity theory,” Int. J. Eng. Sci., vol. 47, no. 4, pp. 487–498, 2009. DOI: 10.1016/j.ijengsci.2008.08.008.
  • B. Wang, J. Zhao, and S. Zhou, “A micro scale Timoshenko beam model based on strain gradient elasticity theory,” Eur. J. Mech. A Solids, vol. 29, no. 4, pp. 591–599, 2010. DOI: 10.1016/j.euromechsol.2009.12.005.
  • R. Ansari, R. Gholami, and S. Sahmani, “Study of small scale effects on the nonlinear vibration response of functionally graded Timoshenko microbeams based on the strain gradient theory,” ASME J. Comput. Nonlinear Dyn., vol. 7, pp. 031010, 2012. DOI: 10.1115/1.4006040.
  • B. Y. Tadi and M. Abadyan, “Use of strain gradient theory for modeling the size-dependent pull-in of rotational nano-mirror in the presence of molecular force,” Int. J. Modern Phys. B, vol. 27, pp. 1350083, 2013. DOI: 10.1142/S0217979213500835.
  • R. Ansari, T. Pourashraf, R. Gholami, S. Sahmani, and M. A. Ashrafi, “Size-dependent resonant frequency and flexural sensitivity of atomic force microscope microcantilevers based on the modified strain gradient theory,” Int. J. Opto Mechatro., vol. 9, pp. 111–130, 2015. DOI: 10.1080/15599612.2015.1034900.
  • J. Lei, Y. He, S. Guo, Z. Li, and D. Liu, “Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity,” AIP Adv., vol. 6, no. 10, pp. 105202, 2016. DOI: 10.1063/1.4964660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.