427
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of deformations of Roma Plastilina # 1 clay in column-drop tests by incorporating the coupled strain rate and temperature effects

&
Pages 1154-1166 | Received 30 Nov 2019, Accepted 04 Jan 2020, Published online: 31 Jan 2020

References

  • A.P. Green, The use of plasticine models to simulate the plastic flow of metals, Phil. Mag., vol. 42, no. 327, pp. 365–373, 1951. DOI: 10.1080/14786445108561061.
  • T. Altan, H.J. Henning, and A.M. Sabroff, The use of model materials in predicting forming loads in metalworking, J. Eng. Ind., vol. 92, no. 2, pp. 444–451, 1970. DOI: 10.1115/1.3427776.
  • K. Eckerson, B. Liechty, and C.D. Sorensen, Thermomechanical similarity between Van Aken plasticine and metals in hot-forming processes, J. Strain Anal. Eng. Des., vol. 43, no. 5, pp. 383–394, 2008. DOI: 10.1243/03093247JSA364.
  • A.F. Johnson and M. Holzapfel, Modelling soft body impact on composite structures, Compos. Struct., vol. 61, no. 1-2, pp. 103–113, 2003. DOI: 10.1016/S-8223(03)00033-3.
  • R.L. Azevedo and M. Alves, Numerical simulation of soft-body impact on GFRP laminate composites: mixed SPH-FE and pure SPH approaches. In Mechanics of Solids in Brazil 2009, H.S. da Costa Mattos and Marcílio Alves, Eds. Brazilian Society of Mechanical Sciences and Engineering, Rio de Janeiro, 2009, pp. 15–30.
  • Committee, Testing of Body Armor Materials: Phase III, Committee on Testing of Body Armor Materials for Use by the U.S. Army, The National Academies Press, Washington, DC, 2012, pp. 46–91.
  • C. Hernandez, M.F. Buchely, and A. Maranon, Dynamic characterization of Roma Plastilina No.1 from drop test and inverse analysis, Int. J. Mech. Sci., vol. 100, pp. 158–168, 2015. DOI: 10.1016/j.ijmecsci.2015.06.009.
  • R. Prather, C. Swann, and C. Hawkins, 1977. Backface Signatures of Soft Body Armors and the Associated Trauma Effects. ARCSL-TR-77055, Edgewood Arsenal, Aberdeen Proving Ground, MD.
  • E. Hanlon and P. Gillich, Origin of the 44-mm behind-armor blunt trauma standard, Mil. Med., vol. 177, no. 3, pp. 333–339, 2012. DOI: 10.7205/MILMED-D-11-00303.
  • NIJ, 2008. Ballistic Resistance of Body Armor NIJ Standard-0101.06, U.S. Department of Justice, Washington, DC.
  • J.E. Seppala, et al., Characterization of clay composite ballistic witness materials, J. Mater. Sci., vol. 50, no. 21, pp. 7048–7057, 2015. DOI: 10.1007/s10853-015-9259-7.
  • M.F. Buchely, A. Maranon, and V.V. Silberschmidt, Material model for modeling clay at high strain rates, Int. J. Impact Eng., vol. 90, pp. 1–11, 2016. DOI: 10.1016/j.ijimpeng.2015.11.005.
  • R. Tao, K.D. Rice, and A.M. Forster, Rheology of ballistic clay: the effect of temperature and shear history. SPE ANTEC® 2017, The Plastics Technology Conference, 5 p., May 8–10, Anaheim, CA, 2017.
  • H.A. Barnes, Thixotropy - a review, J. Non-Newton. Fluid Mech., vol. 70, no. 1-2, pp. 1–33, 1997. DOI: 10.1016/S-0257(97)00004-9.
  • Y.Q. Li, X.-L. Gao, V.A. Halls, and J.Q. Zheng, A new constitutive model for ballistic Roma Plastilina no. 1 clay, Mech. Adv. Mater. Struct., 2019. DOI: 10.1080/15376494.2018.1538471.
  • J.E. Callahan, 2011. Analysis of composite helmet impact by the finite element method, Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
  • G.R. Johnson and W.H. Cook, A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures, Proceedings of the 7th International Symposium on Ballistics, pp. 541–547, April 19–21, The Hague, The Netherlands, 1983.
  • S.P. Mates, A.L. Forster, M. Riley, and K. Rice, Mechanical behavior of ballistic clay as a function of temperature, pressure and strain rate, Personal Armour Systems Symposium 2014, September 8–12, Robinson College, Cambridge, UK, 2014.
  • M.F. Buchely and A. Maranon, An engineering model for the penetration of a rigid-rod into a Cowper–Symonds low-strength material, Acta Mech., vol. 226, no. 9, pp. 2999–3010, 2015. DOI: 10.1007/s00707-015--6.
  • T.G. Zhang, J. Ivancik, R.A. Mrozek, and S.S. Satapathy, Material characterization of Ballistic Roma Plastilina No. 1 clay, Proceedings of the 30th International Symposium on Ballistics, 17 p., September 11–15, Long Beach, CA, 2017. DOI: 10.12783/ballistics2017/17041.
  • Y.Q. Li, X.-L. Gao, A.J. Fournier, and S.A. Sherman, Two new penetration models for ballistic clay incorporating strain-hardening, strain-rate and temperature effects, Int. J. Mech. Sci., vol. 151, pp. 582–594, 2019. DOI: 10.1016/j.ijmecsci.2018.11.009.
  • J.A. Zukas, ed., 1990. High Velocity Impact Dynamics, Wiley-Interscience, New York.
  • M.A. Meyers, 1994. Dynamic Behavior of Materials, John Wiley & Sons, New York.
  • D.E. Maxwell and J.E. Reaugh, 1972. Advanced Methods to Predict the Response of a Site under Nuclear Attack, Report # PIPR-388-1, Physics International Company, San Leandro, CA.
  • D.M. Christensen, C.S. Godfrey, and D.E. Maxwell, 1968. Calculations and Model Experiments to Predict Crater Dimensions and Free-Field Motion, Physics International Company, San Leandro, CA.
  • A.M. Stickle and P.H. Schultz, Subsurface damage from oblique impacts into low‐impedance layers, J. Geophys. Res., vol. 117, no. E7, pp. E07006-1–E07006-19, 2012. DOI: 10.1029/2011JE004043.
  • M.G. Austin, J.M. Thomsen, S.F. Ruhl, D.L. Orphal, and P.H. Schultz, Calculational investigation of impact cratering dynamics-Material motions during the crater growth period. In: Lunar and Planetary Science Conference Proceedings, Vol. 11, Lunar and Planetary Institute, Houston, TX, pp. 2325–2345, 1980.
  • J.N. Reddy, 2018. Introduction to the Finite Element Method, 4th ed., McGraw-Hill, New York.
  • M.J. Adams, I. Aydin, B.J. Briscoe, and S.K. Sinha, A finite element analysis of the squeeze flow of an elasto-viscoplastic paste material, J. Non-Newton. Fluid Mech., vol. 71, no. 1-2, pp. 41–57, 1997. DOI: 10.1016/S-0257(96)01546-7.
  • M.P.F. Sutcliffe and P.J. Rayner, Experimental measurements of load and strip profile in thin strip rolling, Int. J. Mech. Sci., vol. 40, no. 9, pp. 887–899, 1998. DOI: 10.1016/S-7403(97)00138-0.
  • J.M. Thomsen, M.G. Austin, S.F. Ruhl, P.H. Schultz, and D.L. Orphal, Calculational investigation of impact cratering dynamics: early time material motions. In: Lunar and Planetary Science Conference Proceedings, Vol. 10, Lunar and Planetary Institute, Houston, TX, pp. 2741–2756, 1979.
  • D.P. Bentz, A. Forster, K. Rice, and M. Riley, Thermal Properties and Thermal Modeling of Ballistic Clay Box, NIST Interagency/Internal Report # NISTIR-7840, National Institute of Standards and Technology, Gaithersburg, MD, 2011.
  • LS-DYNA, LS-DYNA Keyword User’s Manual, Vol. II Material Models, Livermore Software Technology Corporation (LSTC), Livermore, CA, 2019.
  • N. Gebbeken, S. Greulich, and A. Pietzsch, Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests, Int. J. Impact Eng., vol. 32, no. 12, pp. 2017–2031, 2006. DOI: 10.1016/j.ijimpeng.2005.08.003.
  • J.S. Rinehart, Historical perspective: metallurgical effects of high strain-rate deformation and fabrication. In: Shock Waves and High-Strain-Rate Phenomena in Metals, Springer, Boston, MA, pp. 3–20, 1981.
  • D.B. Rahbek, Finite Element Simulations of Drop Indentations into Oily Clay, FFI-rapport 2014/02221, Norwegian Defense Research Establishment (FFI), Kjeller, Norway, 2015.
  • J.C. Simo and M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods Appl. Mech. Eng., vol. 49, no. 2, pp. 221–245, 1985. DOI: 10.1016/0045-(85)90061-1.
  • M. Ortiz and J.C. Simo, An analysis of a new class of integration algorithms for elastoplastic constitutive relations, Int. J. Numer. Methods Eng., vol. 23, no. 3, pp. 353–366, 1986. DOI: 10.1002/nme.1620230303.
  • K. Chung and O. Richmond, A deformation theory of plasticity based on minimum work paths, Int. J. Plast., vol. 9, no. 8, pp. 907–920, 1993. DOI: 10.1016/0749-(93)90057-W.
  • J.W. Yoon, F. Barlat, R.E. Dick, K. Chung, and T.J. Kang, Plane stress yield function for aluminum alloy sheets - part II: FE formulation and its implementation, Int. J. Plast., vol. 20, no. 3, pp. 495–522, 2004. DOI: 10.1016/S-6419(03)00099-8.
  • N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of aluminum alloys at elevated temperatures–Part 2: numerical modeling and experimental verification, Int. J. Plast., vol. 22, no. 2, pp. 342–373, 2006. DOI: 10.1016/j.ijplas.2005.03.006.
  • R.H. Dodds, Jr, Numerical techniques for plasticity computations in finite element analysis, Comput. Struct., vol. 26, pp. 767–779, 1987. DOI: 10.1016/0045-(87)90026-5.
  • J.C. Simo and T.J.R. Hughes, 1998. Computational Inelasticity, Springer-Verlag, New York.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.