1,063
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Detection of multiple structural damages from drive point and cross electro-mechanical impedance signatures

&
Pages 4738-4758 | Received 11 Feb 2021, Accepted 28 May 2021, Published online: 14 Jun 2021

References

  • A.S.K. Naidu and C.K. Soh, Damage severity and propagation characterization with admittance signatures of piezo transducers, Smart Mater. Struct., vol. 13, no. 2, pp. 393–403, 2004. DOI: 10.1088/0964-1726/13/2/018.
  • P. Malinowski, T. Wandowski, and W. Ostachowicz, The use of electromechanical impedance conductance signatures for detection of weak adhesive bonds of carbon fibre–reinforced polymer, Struct. Health Monit., vol. 14, no. 4, pp. 332–344, 2015. DOI: 10.1177/1475921715586625.
  • V. Gulizzi, P. Rizzo, and A. Milazzo, Electromechanical impedance method for the health monitoring of bonded joints: Numerical modelling and experimental validation, SDHM Struct. Durability Health Monit., vol. 10, pp. 19–54, 2014.
  • F.G. Baptista, D.E. Budoya, V.A.D. de Almeida, and J.A.C. Ulson, An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring, Sensors., vol. 14, no. 1, pp. 1208–1227, 2014. DOI: 10.3390/s140101208.
  • X. Zhu, F. Lanza Di Scalea, and M. Fateh, Temperature and axial stress effects in electromechanical-impedance-method-based structural health monitoring, Health Monit. Struct. Biol. Syst.., vol. 9064, pp. 906410, 2014. DOI: 10.1117/12.2045111.
  • M.M. Islam, and H. Huang, Understanding the effects of adhesive layer on the electromechanical impedance (EMI) of bonded piezoelectric wafer transducer, Smart Mater. Struct., vol. 23, no. 12, pp. 125037, 2014. DOI: 10.1088/0964-1726/23/12/125037.
  • P.H. Malinowski, T. Wandowski, and W.M. Ostachowicz, Characterisation of CFRP adhesive bonds by electromechanical impedance, Health Monit. Struct. Biol. Syst., vol. 9064, pp. 906415, 2014.
  • W.S. Na, Low cost technique for detecting adhesive debonding damage of glass epoxy composite plate using an impedance based non-destructive testing method, Compos. Struct., vol. 189, pp. 99–106, 2018. DOI: 10.1016/j.compstruct.2018.01.053.
  • V.G.M. Annamdas, L.S. Ian, H.L.J. Pang, and C.K. Soh, Monitoring of fatigue in welded beams using piezoelectric wafer based impedance technique, J. Nondestr. Eval., vol. 33, pp. 124–140, 2014.
  • S. Bhalla, P.A. Vittal, and M. Veljkovic, Piezo-impedance transducers for residual fatigue life assessment of bolted steel joints, Struct. Health Monit., vol. 11, no. 6, pp. 733–750, 2012. DOI: 10.1177/1475921712458708.
  • V. Giurgiutiu, A. Reynolds, and C.A. Rogers, Experimental investigation of E/M impedance health monitoring for spot welded structural joints, J. Intel. Mat. Syst. Str., vol. 10, no. 10, pp. 802–812, 1999. DOI: 10.1106/N0J5-6UJ2-W1GV-Q8MC.
  • S. Bhalla and C.K. Soh, Structural health monitoring by Piezo–impedance transducers. I: Applications, J. Aerosp. Eng., vol. 17, no. 4, pp. 154–165, 2004. DOI: 10.1061/(ASCE)0893-1321(2004)17:4(154).
  • S. Bhalla and C.K. Soh, Structural health monitoring by Piezo–impedance transducers. II: Applications, J. Aerosp. Eng., vol. 17, no. 4, pp. 166–175, 2004. DOI: 10.1061/(ASCE)0893-1321(2004)17:4(166).
  • R.A. Antunes, N.E. Cortez, B.M. Gianesini, and J. Vieira Filho, Modeling, simulation, experimentation, and compensation of temperature effect in impedance-based SHM systems applied to steel pipes, Sensors., vol. 19, no. 12, pp. 2802, 2019. DOI: 10.3390/s19122802.
  • W. Roth and V. Giurgiutiu, Structural health monitoring of an adhesive disbond through electromechanical impedance spectroscopy, Int. J. Adhes. Adhes., vol. 73, pp. 109–117, 2017. DOI: 10.1016/j.ijadhadh.2016.11.008.
  • V. Lopes, G. Park, H.H. Cudney, and D.J. Inman, Impedance-based structural health monitoring with artificial neural networks, J. Intell. Mater. Syst. Struct., vol. 11, no. 3, pp. 206–214, 2000. DOI: 10.1106/H0EV-7PWM-QYHW-E7VF.
  • Y.Y. Kim and R.K. Kapania, Neural Networks for inverse problems using principal component analysis and orthogonal arrays, AIAA J., vol. 44, no. 7, pp. 1628–1634, 2006. DOI: 10.2514/1.10641.
  • M.R. Sunny and R.K. Kapania, Damage detection in a prestressed membrane using a wavelet-based neurofuzzy system, AIAA J., vol. 51, no. 11, pp. 2558–2569, 2013. DOI: 10.2514/1.J052084.
  • J. Min, S. Park, C.B. Yun, C.G. Lee, and C. Lee, Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity, Eng. Struct., vol. 39, pp. 210–220, 2012. DOI: 10.1016/j.engstruct.2012.01.012.
  • J. Min, S. Park, and C. Yun, Impedance-based structural health monitoring using neural networks for autonomous frequency range selection, Smart Mater. Struct., vol. 19, pp. 125011, 2010.
  • P. Selva, O. Cherrier, V. Budinger, F. Lachaud, and J. Morlier, Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks, Eng. Struct., vol. 56, pp. 794–804, 2013. DOI: 10.1016/j.engstruct.2013.05.025.
  • Sepehry, N., Shamshirsaz, M., and Abdollahi, F., “Temperature variation effect compensation in impedance-based structural health monitoring using neural networks,” Journal of Intelligent Material Systems and Structures, vol. 22, 2011, pp. 1975–1982.
  • D. Wang, H. Song, and H. Zhu, Numerical and experimental studies on damage detection of a concrete beam based on PZT admittances and correlation coefficient, Constr. Build. Mater., vol. 49, pp. 564–574, 2013. DOI: 10.1016/j.conbuildmat.2013.08.074.
  • M. Djemana, M. Hrairi, and Y. Al Jeroudi, Using electromechanical impedance and extreme learning machine to detect and locate damage in structures, J. Nondestr. Eval., vol. 36, no. 2, pp. 1–10, 2017. DOI: 10.1007/s10921-017-0417-5.
  • C.M. Diwakar, N. Patil, and M.R. Sunny, Structural damage detection using vibration response through cross-correlation analysis: Experimental study, AIAA J., vol. 56, no. 6, pp. 2455–2465, 2018. DOI: 10.2514/1.J056626.
  • K.E. Castanien, and C. Liang, Application of active structural health monitoring technique to aircraft fuselage structures, Smart Mater. Struct., vol. 2721, pp. 38–49, 2005.
  • S. Bhalla, and C.K. Soh, Electro-mechanical impedance technique. In: Prof. Chee-Kiong Soh; Prof. Suresh Bhalla; Prof. Yaowen Yang (editors), Smart Materials in Structural Health Monitoring, Control and Biomechanics, Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.