598
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Multiscale modeling of load transfer characteristics in crosslinked epoxy nanocomposites

, , &
Pages 4768-4778 | Received 27 May 2021, Accepted 28 May 2021, Published online: 14 Jun 2021

References

  • N. Nandihalli, C.-J. Liu, and T. Mori, Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics, Nano Energy., vol. 78, pp. 105186, 2020. DOI: 10.1016/j.nanoen.2020.105186.
  • J. Jancar, et al., Current issues in research on structure–property relationships in polymer nanocomposites, Polymer., vol. 51, no. 15, pp. 3321–3343, 2010. DOI: 10.1016/j.polymer.2010.04.074.
  • S. K. Kumar, B. C. Benicewicz, R. A. Vaia, and K. I. Winey, 50th anniversary perspective: Are polymer nanocomposites practical for applications?, Macromol., vol. 50, no. 3, pp. 714–731, 2017. DOI: 10.1021/acs.macromol.6b02330.
  • M.-l. Chan, K.-t. Lau, T.-t. Wong, M.-p. Ho, and D. Hui, Mechanism of reinforcement in a nanoclay/polymer composite, Compos. Part B Engin., vol. 42, no. 6, pp. 1708–1712, 2011. DOI: 10.1016/j.compositesb.2011.03.011.
  • S. E. Harton, et al., Immobilized polymer layers on spherical nanoparticles, Macromol., vol. 43, no. 7, pp. 3415–3421, 2010. DOI: 10.1021/ma902484d.
  • K. S. Khare, and R. Khare, Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy–carbon nanotube nanocomposites: role of interfacial interactions, J. Phys. Chem. B., vol. 117, no. 24, pp. 7444–7454, 2013. DOI: 10.1021/jp401614p.
  • H. D. Wagner, and R. A. Vaia, Nanocomposites: issues at the interface, Mater. Today., vol. 7, no. 11, pp. 38–42, 2004. DOI: 10.1016/S1369-7021(04)00507-3.
  • M. Nie, D. M. Kalyon, and F. T. Fisher, Interfacial load transfer in polymer/carbon nanotube nanocomposites with a nanohybrid shish kebab modification, ACS Appl. Mater. Interfaces., vol. 6, no. 17, pp. 14886–14893, 2014. DOI: 10.1021/am501879q.
  • Z. Li, R. J. Young, and I. A. Kinloch, Interfacial stress transfer in graphene oxide nanocomposites, ACS Appl. Mater. Interfaces. ., vol. 5, no. 2, pp. 456–463, 2013. DOI: 10.1021/am302581e.
  • L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S. Novoselov, Interfacial stress transfer in a graphene monolayer nanocomposite, Adv. Mater., vol. 22, no. 24, pp. 2694–2697, 2010. DOI: 10.1002/adma.200904264.
  • P. A. Amnaya, C. L. Dimitris, and C. H. Daniel, Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics, Modell. Simul. Mater. Sci. Eng., vol. 17, no. 1, pp. 015002, 2009.
  • Y. Li, and G. D. Seidel, Multiscale modeling of the effects of nanoscale load transfer on the effective elastic properties of unfunctionalized carbon nanotube–polyethylene nanocomposites, Modelling Simul. Mater. Sci. Eng., vol. 22, no. 2, pp. 025023, 2014. DOI: 10.1088/0965-0393/22/2/025023.
  • Y. Zhang, et al., Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation, Compos. Part B: Engin., vol. 63, pp. 27–33, 2014. DOI: 10.1016/j.compositesb.2014.03.009.
  • Q. Jiang, S. S. Tallury, Y. Qiu, and M. A. Pasquinelli, Interfacial characteristics of a carbon nanotube-polyimide nanocomposite by molecular dynamics simulation, Nanotechnol. Rev., vol. 9, no. 1, pp. 136–145, 2020. DOI: 10.1515/ntrev-2020-0012.
  • S. Yang, H. Shin, and M. Cho, Contribution of oxygen functional groups in graphene to the mechanical and interfacial behaviour of nanocomposites: Molecular dynamics and micromechanics study, Int. J. Mech. Sci., vol. 189, pp. 105972, 2021. DOI: 10.1016/j.ijmecsci.2020.105972.
  • B. Kim, J. Choi, S. Yang, S. Yu, and M. Cho, Multiscale modeling of interphase in crosslinked epoxy nanocomposites, Compos. Part B: Engin., vol. 120, no. Supplement C, pp. 128–142, 2017. DOI: 10.1016/j.compositesb.2017.03.059.
  • BIOVIA, Dassault Systèmes, BIOVIA Materials Studio, San Diego.
  • H. Sun, Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters, J. Comput. Chem., vol. 15, no. 7, pp. 752–768, 1994. DOI: 10.1002/jcc.540150708.
  • S. Plimpton, P. Crozier, and A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator, Sandia National Laboratories., vol. 18, pp. 43, 2007.
  • A. K. Subramaniyan, and C. T. Sun, Continuum interpretation of virial stress in molecular simulations, Int. J. Solids Struct., vol. 45, no. 14-15, pp. 4340–4346, 2008. DOI: 10.1016/j.ijsolstr.2008.03.016.
  • B. Kim, J. Choi, S. Yang, S. Yu, and M. Cho, Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites, Polymer., vol. 60, pp. 186–197, 2015. DOI: 10.1016/j.polymer.2015.01.043.
  • R. Rahul, and R. Kitey, Effect of cross-linking on dynamic mechanical and fracture behavior of epoxy variants, Compos. Part B: Engin., vol. 85, pp. 336–342, 2016. DOI: 10.1016/j.compositesb.2015.09.017.
  • T. Okabe, Y. Oya, K. Tanabe, G. Kikugawa, and K. Yoshioka, Molecular dynamics simulation of crosslinked epoxy resins: Curing and mechanical properties, Eur. Polym. J., vol. 80, pp. 78–88, 2016. DOI: 10.1016/j.eurpolymj.2016.04.019.
  • S. Yang, and M. Cho, Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites, Appl. Phys. Lett., vol. 93, no. 4, pp. 043111, 2008. DOI: 10.1063/1.2965486.
  • T. Vidil, F. Tournilhac, S. Musso, A. Robisson, and L. Leibler, Control of reactions and network structures of epoxy thermosets, Prog. Polym. Sci., vol. 62, pp. 126–179, 2016. DOI: 10.1016/j.progpolymsci.2016.06.003.
  • S. Yang, et al., Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection, Int. J. Plast., vol. 41, pp. 124–146, 2013. DOI: 10.1016/j.ijplas.2012.09.010.
  • P. Barai, and G. J. Weng, Mechanics of nanocrystalline coating and grain-size dependence of its plastic strength, J. Mech. Mater. Struct., vol. 43, pp. 496–504, 2011.
  • M. P. Bendsøe, and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput Method Appl Mech., vol. 71, no. 2, pp. 197–224, 1988. DOI: 10.1016/0045-7825(88)90086-2.
  • J. M. Guedes, and N. Kikuchi, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput Method Appl Mech., vol. 83, no. 2, pp. 143–198, 1990. DOI: 10.1016/0045-7825(90)90148-F.
  • S. Song, Y. Chen, Z. Su, C. Quan, and V. B. C. Tan, Effects of clay structural parameters and gallery strength on the damage behavior of epoxy/clay nanocomposites, Compos. Sci. Technol., vol. 85, pp. 50–57, 2013. DOI: 10.1016/j.compscitech.2013.05.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.