185
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of surface-profile of orthotropic cylindrical shell for maximizing its ultimate strength

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4800-4812 | Received 27 Jan 2021, Accepted 01 Jun 2021, Published online: 01 Jul 2021

References

  • C. Kassapoglou, Design and analysis of composite structures: with applications to aerospace structures. Hoboken, NJ, USA. John Wiley & Sons Ltd., 2010. DOI: 10.1002/9781118536933.
  • A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, Review of advanced composite structures for naval ships and submarines, Compos. Struct., vol. 53, no. 1, pp. 21–42, 2001. DOI: 10.1016/S0263-8223(00)00175-6.
  • M. Stein, Some recent advances in the investigation of shell buckling, J. Spacecraft Rockets, vol. 40, no. 6, pp. 908–917, 2003. DOI: 10.2514/2.7057.
  • L. Dong and J. Mistry, An experimental study of the failure of composite cylinders subjected to combined external pressure and axial compression, Compos. Struct., vol. 40, no. 1, pp. 81–94, 1997. DOI: 10.1016/S0263-8223(97)00163-3.
  • P. M. Weaver, Design of laminated composite cylindrical shells under axial compression, Compos. Part B Eng., vol. 31, no. 8, pp. 669–679, 2000. DOI: 10.1016/S1359-8368(00)00029-9.
  • S. Nikbakt, S. Kamarian, and M. Shakeri, A review on optimization of composite structures Part I: Laminated composites, Compos. Struct., vol. 195, pp. 158–185, 2018. DOI: 10.1016/j.compstruct.2018.03.063.
  • S. G. P. Castro, R. Zimmermann, M. A. Arbelo, R. Khakimova, M. W. Hilburger, and R. Degenhardt, Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells, Thin-Walled Struct., vol. 74, pp. 118–132, 2014. DOI: 10.1016/j.tws.2013.08.011.
  • B. Wang, X. Ma, P. Hao, Y. Sun, K. Tian, G. Li, K. Zhang, L. Jiang, and J. Guo, Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections, Compos. Part B Eng., vol. 163, pp. 314–323, 2019. DOI: 10.1016/j.compositesb.2018.11.049.
  • R. C. Tennyson, Buckling of laminated composite cylinders: A review, Composites, vol. 6, no. 1, pp. 17–24, 1975. DOI: 10.1016/0010-4361(75)90374-2.
  • G. J. Simitses, Buckling of moderately thick laminated cylindrical shells: a review, Compos. Part B Eng., vol. 27, no. 6, pp. 581–587, 1996. DOI: 10.1016/1359-8368(95)00013-5.
  • W. T. Koiter, On the stability of elastic equilibrium (in Dutch). Thesis 1945, Delft Univ., H.J Paris, Amsterdam; English Translation: AFFDL-TR-70 25, 1970.
  • N. S. Khot, Buckling and postbuckling behavior of composite cylindrical shells under axial compression, AIAA J., vol. 8, no. 2, pp. 229–235, 1970. DOI: 10.2514/3.5648.
  • B. Geier, H. R. Meyer-Piening, and R. Zimmermann, On the influence of laminate stacking on buckling of composite cylindrical shells subjected to axial compression, Compos. Struct., vol. 55, no. 4, pp. 467–474, 2002. DOI: 10.1016/S0263-8223(01)00175-1.
  • C. Bisagni, Numerical analysis and experimental correlation of composite shell buckling and post-buckling, Compos. Part B Eng., vol. 31, no. 8, pp. 655–667, 2000. DOI: 10.1016/S1359-8368(00)00031-7.
  • R. S. Priyadarsini, V. Kalyanaraman, and S. M. Srinivasan, Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression, Int. J. Str. Stab. Dyn., vol. 12, no. 04, pp. 1250028–1250128, 2012. DOI: 10.1142/S0219455412500289.
  • A. Shahrjerdi and B. Bahramibabamiri, The effect of different geometrical imperfection of buckling of composite cylindrical shells subjected to axial loading, Int. J. Mech. Mater. Eng., vol. 10, no. 1, pp. 6, 2015. DOI: 10.1186/s40712-015-0033-z.
  • F. Taheri-Behrooz, M. Omidi, and M. M. Shokrieh, Experimental and numerical investigation of buckling behavior of composite cylinders with cutout, Thin-Walled Struct., vol. 116, pp. 136–144, 2017. DOI: 10.1016/j.tws.2017.03.009.
  • S. Aghajari, K. Abedi, and H. Showkati, Buckling and post-buckling behavior of thin-walled cylindrical steel shells with varying thickness subjected to uniform external pressure, Thin-Walled Struct., vol. 44, no. 8, pp. 904–909, 2006. DOI: 10.1016/j.tws.2006.08.015.
  • Z. M. Li and Z. Q. Lin, Non-linear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads, Compos. Struct., vol. 92, no. 2, pp. 553–567, 2010. DOI: 10.1016/j.compstruct.2009.08.048.
  • H. S. Shen and Q. S. Li, Postbuckling of cross-ply laminated cylindrical shells with piezoelectric actuators under complex loading conditions, Int. J. Mech. Sci., vol. 44, no. 8, pp. 1731–1754, 2002. DOI: 10.1016/S0020-7403(02)00056-5.
  • A. Tafreshi and C. G. Bailey, Instability of imperfect composite cylindrical shells under combined loading, Compos. Struct., vol. 80, no. 1, pp. 49–64, 2007. DOI: 10.1016/j.compstruct.2006.02.031.
  • M. Walker, T. Reiss, and S. Adali, Multiobjective design of laminated cylindrical shells for maximum torsional and axial buckling loads, Comput. Struct., vol. 62, no. 2, pp. 237–242, 1997. DOI: 10.1016/S0045-7949(96)00189-7.
  • N. Jaunky, N. F. Knight, Jr, and D. R. Ambur, Optimal design of general stiffened composite circular cylinders for global buckling with strength constraints, Compos. Struct., vol. 41, no. 3–4, pp. 243–252, 1998. DOI: 10.1016/S0263-8223(98)00020-8.
  • T. Messager, M. Pyrz, B. Gineste, and P. Chauchot, Optimal laminations of thin underwater composite cylindrical vessels, Compos. Struct., vol. 58, no. 4, pp. 529–537, 2002. DOI: 10.1016/S0263-8223(02)00162-9.
  • U. Topal, Multiobjective optimization of laminated composite cylindrical shells formaximum frequency and buckling load, Mater. Des., vol. 30, no. 7, pp. 2584–2594, 2009. DOI: 10.1016/j.matdes.2008.09.020.
  • E. Lindgaard and E. Lund, Nonlinear buckling optimization of composite structures, Comput. Methods Appl. Mech. Eng., vol. 199, no. 37–40, pp. 2319–2330, 2010. DOI: 10.1016/j.cma.2010.02.005.
  • C. C. Antonio and L. N. Hoffbauer, Optimal design of composite shells based on minimum weight and maximum feasibility robustness, Int. J. Mech. Mater. Des., vol. 13, no. 2, pp. 287–310, 2017. DOI: 10.1007/s10999-015-9329-7.
  • H. K. Cho, Optimization of laminated composite cylindrical shells to maximize resistance to buckling and failure when subjected to axial and torsional loads, Int. J. Precis. Eng. Manuf., vol. 19, no. 1, pp. 85–95, 2018. DOI: 10.1007/s12541-018-0010-6.
  • J. H. S. Almeida, Jr, L. Bittrich, E. Jansen, V. Tita, and A. Spickenheuer, Buckling optimization of composite cylinders for axial compression: A design methodology considering a variable-axial fiber layout, Compos. Struct., vol. 222, pp. 110928, 2019. DOI: 10.1016/j.compstruct.2019.110928.
  • R. Wei, G. Pan, J. Jiang, K. Shen, and D. Lyu, An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm, Thin-Walled Struct., vol. 142, pp. 160–170, 2019. DOI: 10.1016/j.tws.2019.05.010.
  • M. Imran, D. Shi, L. Tong, and H. M. Waqas, Design optimization of composite submerged cylindrical pressure hull using genetic algorithm and finite element analysis, Ocean Eng., vol. 190, pp. 106443, 2019. DOI: 10.1016/j.oceaneng.2019.106443.
  • MATLAB 2018a, The MathWorks, Inc., Natick, Massachusetts, United States, 2018.
  • ANSYS Inc, Ansys Theory Reference Manual; Release 15.0, USA. 2015.
  • S. W. Tsai and E. M. Wu, A general theory of strength for anisotropic materials, J. Compos. Mater., vol. 5, no. 1, pp. 58–80, 1971. DOI: 10.1177/002199837100500106.
  • A. R. Ghasemi and M. H. Hajmohammad, Multi-objective optimization of laminated composite shells for minimum mass/cost and maximum buckling pressure with failure criteria under external hydrostatic pressure, Struct. Multidisc. Optim., vol. 55, no. 3, pp. 1051–1062, 2017. DOI: 10.1007/s00158-016-1559-2.
  • P. Jana, Optimal design of uniaxially compressed perforated rectangular plate for maximum buckling load, Thin-Walled Struct., vol. 103, pp. 225–230, 2016. DOI: 10.1016/j.tws.2015.12.027.
  • P. K. Choudhary and P. Jana, Position optimization of circular/elliptical cutout within an orthotropic rectangular plate for maximum buckling load, Steel Compos. Struct., vol. 29, pp. 39–51, 2018.
  • M. I. Alam, B. Kanagarajan, and P. Jana, Optimal design of thin-walled open cross-section column for maximum buckling load, Thin-Walled Struct., vol. 141, pp. 423–434, 2019. DOI: 10.1016/j.tws.2019.04.018.
  • H. Lin, A. Xu, A. Misra, and R. Zhao, An ANSYS APDL code for topology optimization of structures with multi-constraints using the BESO method with dynamic evolution rate (DER-BESO), Struct. Multidisc. Optim., vol. 62, no. 4, pp. 2229–2254, 2020. DOI: 10.1007/s00158-020-02588-2.
  • D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Pearson Education Inc., 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.