2,113
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Lightweight sandwich structures for marine applications: a review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4839-4864 | Received 29 Jan 2021, Accepted 05 Jun 2021, Published online: 06 Jul 2021

References

  • SANDCORe Co-ordination Action, Best Practice Guide for Sandwich Structures in Marine Applications, 2013.
  • P. Kujala, and A. Klanac, Steel sandwich panels in marine applications, Brodogradnja., vol. 56, pp. 305–314, 2005.
  • F. J. Plantema, Sandwich Construction: The Bending and Buckling of Sandwich Beams, Plates, and Shells., 1966.
  • H. G. Allen, Analysis and Design of Structural Sandwich Panels, Franklin Book Co, Pergamon Press, London, 1969.
  • D. Zenkert, The Handbook of Sandwich Construction, Engineering Materials Advisory Services Ltd, London, 1997.
  • J. M. Davies, Lighweight Sandwich Constructions, Blackwell Science Ltd, Oxford, UK, 2001.
  • A. F. Johnson, and G. D. Sims, Mechanical properties and design of sandwich materials, Composites, vol. 17, no. 4, pp. 321–328, 1986. DOI: 10.1016/0010-4361(86)90749-4.
  • J. R. Vinson, Sandwich structures, Appl. Mech. Rev., vol. 54, no. 3, pp. 201–214, 2001. DOI: 10.1115/1.3097295.
  • L. J. Gibson, and M. F. Ashby, Cellular Solids-Structure and Properties, Cambridge University Press, New York, 1999.
  • M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, and J. W. Hutchinson, Metal Foams: A Design Guide, Elsevier, Amsterdam, Netherlands, 2000.
  • V. S. Deshpande, M. F. Ashby, and N. A. Fleck, Foam topology: bending versus stretching dominated architectures, Acta Mater., vol. 49, no. 6, pp. 1035–1040, 2001. DOI: 10.1016/S1359-6454(00)00379-7.
  • V. Birman, and G. A. Kardomateas, Review of current trends in research and applications of sandwich structures, Compos. Part B Eng., vol. 142, pp. 221–240, 2018. DOI: 10.1016/j.compositesb.2018.01.027.
  • B. Castanié, C. Bouvet, and M. Ginot, Review of composite sandwich structure in aeronautic applications, Compos. Part C Open Access., vol. 1, pp. 100004, 2020. DOI: 10.1016/j.jcomc.2020.100004.
  • P. Noury, B. Hayman, D. McGeorge, and J. Weitzenböck, Lightweight construction for advanced shipbuilding-recent development, in Proceedings of the 37th WEGEMT Summer School, pp. 11–15, 2002.
  • DNV GL, Steel Sandwich Panel Construction, 2016.
  • DNV GL, Rules for Classification – Ships – Part 3 Hull – Chapter 3 Structural Design Principles, 2017.
  • DNV GL, Rules For Classification – Ships – Part 2 Materials and welding – Chapter 2 Metallic materials, 2019.
  • Lloyd’s Register, Rules for the Application of Sandwich Panel Construction to Ship Structure, 2020.
  • Lloyd’s Register, Rules for the Manufacture, Testing and Certification of Materials, 2020.
  • DNV GL, Rules For Classification – High Speed and Light Craft – Part 3 Structures, Equipment – Chapter 4 Hull Structural Design, Fibre Composite and Sandwich Constructions, 2016.
  • DNV GL, Rules For Classification – Ships – Part 2 Materials and Welding – Chapter 3 Non-Metallic Materials, 2015.
  • Lloyd’s Register, Rules and Regulations for the Classification of Special Service Craft, 2011.
  • RINA, Rules for the Classification of Fast Patrol Vessels – Part B: Hull and Stability, 2007.
  • Bureau Veritas, Hull in Composite Materials and Plywood, Material Approval, Design Principles, Construction and Survey, 2018.
  • Z. Li, Z. Zheng, J. Yu, C. Qian, and F. Lu, Deformation and failure mechanisms of sandwich beams under three-point bending at elevated temperatures, Compos. Struct., vol. 111, pp. 285–290, 2014. DOI: 10.1016/j.compstruct.2014.01.005.
  • H. Bart-Smith, J. W. Hutchinson, and A. G. Evans, Measurement and analysis of the structural performance of cellular metal sandwich construction, Int. J. Mech. Sci., vol. 43, no. 8, pp. 1945–1963, 2001. DOI: 10.1016/S0020-7403(00)00070-9.
  • O. Kesler, and L. Gibson, Size effects in metallic foam core sandwich beams, Mater. Sci. Eng. A., vol. 326, no. 2, pp. 228–234, 2002. DOI: 10.1016/S0921-5093(01)01487-3.
  • V. Crupi, and R. Montanini, Aluminium foam sandwiches collapse modes under static and dynamic three-point bending, Int. J. Impact Eng., vol. 34, no. 3, pp. 509–521, 2007. DOI: 10.1016/j.ijimpeng.2005.10.001.
  • V. Crupi, G. Epasto, and E. Guglielmino, Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading, Int. J. Impact Eng., vol. 43, pp. 6–15, 2012. DOI: 10.1016/j.ijimpeng.2011.12.002.
  • T. M. McCormack, R. Miller, O. Kesler, and L. J. Gibson, Failure of sandwich beams with metallic foam cores, Int. J. Solids Struct., vol. 38, no. 28-29, pp. 4901–4920, 2001. DOI: 10.1016/S0020-7683(00)00327-9.
  • T. C. Triantafillou, and L. J. Gibson, Failure mode maps for foam core sandwich beams, Mater. Sci. Eng., vol. 95, pp. 37–53, 1987. DOI: 10.1016/0025-5416(87)90496-4.
  • A. Chen, and J. F. Davalos, Strength evaluations of sinusoidal core for FRP sandwich bridge deck panels, Compos. Struct., vol. 92, no. 7, pp. 1561–1573, 2010. DOI: 10.1016/j.compstruct.2009.10.039.
  • Y.-M. Jen, and H.-B. Lin, Temperature-dependent monotonic and fatigue bending strengths of adhesively bonded aluminum honeycomb sandwich beams, Mater. Des., vol. 45, pp. 393–406, 2013. DOI: 10.1016/j.matdes.2012.09.028.
  • E. Labans, K. Kalnins, and C. Bisagni, Flexural behavior of sandwich panels with cellular wood, plywood stiffener/foam and thermoplastic composite core, J. Sandwich Struct. Mater., vol. 21, no. 2, pp. 784–805, 2019. DOI: 10.1177/1099636217699587.
  • A. Petras, and M. P. F. Sutcliffe, Failure mode maps for honeycomb sandwich panels, Compos. Struct., vol. 44, no. 4, pp. 237–252, 1999. DOI: 10.1016/S0263-8223(98)00123-8.
  • J. Banghai, L. Zhibin, and L. Fangyun, Failure mechanism of sandwich beams subjected to three-point bending, Compos. Struct., vol. 133, pp. 739–745, 2015. DOI: 10.1016/j.compstruct.2015.07.056.
  • M. F. Ashby, Materials Selection in Mechanical Design, 3rd ed. Elsevier, Oxford, 2005.
  • G. Palomba, G. Epasto, V. Crupi, and E. Guglielmino, Single and double-layer honeycomb sandwich panels under impact loading, Int. J. Impact Eng., vol. 121, pp. 77–90, 2018. DOI: 10.1016/j.ijimpeng.2018.07.013.
  • G. Palomba, V. Crupi, and G. Epasto, Collapse modes of aluminium honeycomb sandwich structures under fatigue bending loading, Thin-Walled Struct., vol. 145, pp. 106363, 2019. DOI: 10.1016/j.tws.2019.106363.
  • V. Crupi, G. Epasto, and E. Guglielmino, Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs Foam, Mar. Struct., vol. 30, pp. 74–96, 2013. DOI: 10.1016/j.marstruc.2012.11.002.
  • S. Abrate, G. Epasto, E. Kara, V. Crupi, E. Guglielmino, and H. Aykul, Computed tomography analysis of impact response of lightweight sandwich panels with micro lattice core, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 232, no. 8, pp. 1348–1362, 2018. DOI: 10.1177/0954406218766383.
  • C. De Marco Muscat-Fenech, J. Cortis, and C. Cassar, Impact damage testing on composite marine sandwich panels, part 1: Quasi-static indentation, J. Sandwich Struct. Mater., vol. 16, no. 4, pp. 341–376, 2014. DOI: 10.1177/1099636214529959.
  • Z. Chen, and N. Yan, Investigation of elastic moduli of Kraft paper honeycomb core sandwich panels, Compos. Part B Eng., vol. 43, no. 5, pp. 2107–2114, 2012. DOI: 10.1016/j.compositesb.2012.03.008.
  • M. Burman, and D. Zenkert, Fatigue of foam core sandwich beams—1: undamaged specimens, Int. J. Fatigue., vol. 19, no. 7, pp. 551–561, 1997. DOI: 10.1016/S0142-1123(97)00069-8.
  • K. Kanny, and H. Mahfuz, Flexural fatigue characteristics of sandwich structures at different loading frequencies, Compos. Struct., vol. 67, no. 4, pp. 403–410, 2005. DOI: 10.1016/j.compstruct.2004.01.021.
  • A.-M. Harte, N. Fleck, and M. Ashby, The fatigue strength of sandwich beams with an aluminium alloy foam core, Int. J. Fatigue., vol. 23, no. 6, pp. 499–507, 2001. DOI: 10.1016/S0142-1123(01)00012-3.
  • S. Belouettar, A. Abbadi, Z. Azari, R. Belouettar, and P. Freres, Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests, Compos. Struct., vol. 87, no. 3, pp. 265–273, 2009. DOI: 10.1016/j.compstruct.2008.01.015.
  • A. Rajaneesh, Y. Zhao, G. B. Chai, and I. Sridhar, Flexural fatigue life prediction of CFRP-Nomex honeycomb sandwich beams, Compos. Struct., vol. 192, pp. 225–231, 2018. DOI: 10.1016/j.compstruct.2018.02.067.
  • M. Burman, and D. Zenkert, Fatigue of Undamaged and damaged honeycomb sandwich beams, J. Sandwich Struct. Mater., vol. 2, no. 1, pp. 50–74, 2000. DOI: 10.1177/109963620000200103.
  • G. Belingardi, P. Martella, and L. Peroni, Fatigue analysis of honeycomb-composite sandwich beams, Compos. Part A Appl. Sci. Manuf., vol. 38, no. 4, pp. 1183–1191, 2007. DOI: 10.1016/j.compositesa.2006.06.007.
  • Y.-M. Jen, and L.-Y. Chang, Evaluating bending fatigue strength of aluminum honeycomb sandwich beams using local parameters, Int. J. Fatigue., vol. 30, no. 6, pp. 1103–1114, 2008. DOI: 10.1016/j.ijfatigue.2007.08.006.
  • A. Abbadi, Z. Azari, S. Belouettar, J. Gilgert, and P. Freres, Modelling the fatigue behaviour of composites honeycomb materials (aluminium/aramide fibre core) using four-point bending tests, Int. J. Fatigue., vol. 32, no. 11, pp. 1739–1747, 2010. DOI: 10.1016/j.ijfatigue.2010.01.005.
  • Y.-M. Jen, F.-L. Teng, and T.-C. Teng, Two-stage cumulative bending fatigue behavior for the adhesively bonded aluminum honeycomb sandwich panels, Mater. Des., vol. 54, pp. 805–813, 2014. DOI: 10.1016/j.matdes.2013.09.010.
  • W. Boukharouba, A. Bezazi, and F. Scarpa, Identification and prediction of cyclic fatigue behaviour in sandwich panels, Measurement., vol. 53, pp. 161–170, 2014. DOI: 10.1016/j.measurement.2014.03.041.
  • X. Wu, H. Yu, L. Guo, L. Zhang, X. Sun, and Z. Chai, Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure, Compos. Struct., vol. 213, pp. 165–172, 2019. DOI: 10.1016/j.compstruct.2019.01.081.
  • A. Bezazi, S. G. Pierce, K. Worden, and E. H. Harkati, Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network, Int. J. Fatigue., vol. 29, no. 4, pp. 738–747, 2007. DOI: 10.1016/j.ijfatigue.2006.06.013.
  • N. Sharma, R. F. Gibson, and E. O. Ayorinde, Fatigue of foam and honeycomb core composite sandwich structures: a tutorial, J. Sandwich Struct. Mater., vol. 8, no. 4, pp. 263–319, 2006. DOI: 10.1177/1099636206063337.
  • L. S. Sutherland, A review of impact testing on marine composite materials: Part I – Marine impacts on marine composites, Compos. Struct., vol. 188, pp. 197–208, 2018. DOI: 10.1016/j.compstruct.2017.12.073.
  • B. Liu, Y. Garbatov, L. Zhu, and C. Guedes Soares, Numerical assessment of the structural crashworthiness of corroded ship hulls in stranding, Ocean Eng., vol. 170, pp. 276–285, 2018. DOI: 10.1016/j.oceaneng.2018.10.034.
  • J. W. Ringsberg, Characteristics of material, ship side structure response and ship survivability in ship collisions, Ships Offshore Struct., vol. 5, no. 1, pp. 51–66, 2010. DOI: 10.1080/17445300903088707.
  • L. S. Sutherland, A review of impact testing on marine composite materials: Part II – Impact event and material parameters, Compos. Struct., vol. 188, pp. 503–511, 2018. DOI: 10.1016/j.compstruct.2018.01.041.
  • L. S. Sutherland, A review of impact testing on marine composite materials: Part III – Damage tolerance and durability, Compos. Struct., vol. 188, pp. 512–518, 2018. DOI: 10.1016/j.compstruct.2018.01.042.
  • L. S. Sutherland, A review of impact testing on marine composite materials: Part IV – Scaling, strain rate and marine-type laminates, Compos. Struct., vol. 200, pp. 929–938, 2018. DOI: 10.1016/j.compstruct.2018.06.052.
  • M. Garrido, R. Teixeira, J. Correia, and L. Sutherland, Quasi-static indentation and impact in glass-fibre reinforced polymer sandwich panels for civil and ocean engineering applications, J. Sandwich Struct. Mater., vol. 23, pp. 109963621983013, 2019.
  • T. Castilho, L. S. Sutherland, and C. G. Soares, Impact resistance of marine sandwich composites, Marit. Technol. Eng., vol. 1, pp. 607–617, 2015.
  • L. S. Sutherland, M. F. Sá, J. R. Correia, C. Guedes Soares, A. Gomes, and N. Silvestre, Impact response of pedestrian bridge multicellular pultruded GFRP deck panels, Compos. Struct., vol. 171, pp. 473–485, 2017. DOI: 10.1016/j.compstruct.2017.03.052.
  • V. Crupi, G. Epasto, E. Guglielmino, H. Mozafari, and S. Najafian, Computed tomography-based reconstruction and finite element modelling of honeycomb sandwiches under low-velocity impacts, J. Sandwich Struct. Mater., vol. 16, no. 4, pp. 377–397, 2014. DOI: 10.1177/1099636214531515.
  • K. N. Shivakumar, W. Elber, and W. Illg, Prediction of impact force and duration due to low-velocity impact on circular composite laminates, J. Appl. Mech., vol. 52, pp. 674-680, 1985.
  • S. Abrate, Impact on Composite Structures, Cambridge University Press, New York, 1998.
  • C. C. Foo, G. B. Chai, and L. K. Seah, A model to predict low-velocity impact response and damage in sandwich composites, Compos. Sci. Technol., vol. 68, no. 6, pp. 1348–1356, 2008. DOI: 10.1016/j.compscitech.2007.12.007.
  • V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, Theoretical and experimental analysis for the impact response of glass fibre reinforced aluminium honeycomb sandwiches, J. Sandwich Struct. Mater., vol. 20, no. 1, pp. 42–69, 2018. DOI: 10.1177/1099636216629375.
  • A. Hazizan, and W. J. Cantwell, The low velocity impact response of an aluminium honeycomb sandwich structure, Compos. Part B Eng., vol. 34, no. 8, pp. 679–687, 2003. DOI: 10.1016/S1359-8368(03)00089-1.
  • S. Feli, and M. H. Namdari Pour, An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact, Compos. Part B Eng., vol. 43, no. 5, pp. 2439–2447, 2012. DOI: 10.1016/j.compositesb.2011.11.028.
  • A. Hazizan, and W. J. Cantwell, The low velocity impact response of foam-based sandwich structures, Compos. Part B Eng., vol. 33, pp. 193–204, 2002.
  • C. C. Foo, L. K. Seah, and G. B. Chai, A modified energy-balance model to predict low-velocity impact response for sandwich composites, Compos. Struct., vol. 93, no. 5, pp. 1385–1393, 2011. DOI: 10.1016/j.compstruct.2010.11.008.
  • P. Rupp, P. Elsner, and K. A. Weidenmann, Small object low-velocity impact damage on hybrid sandwich structures with CFRP face sheets and aluminum foam cores, Int. J. Crashworthiness., vol. 23, no. 6, pp. 697–710, 2018. DOI: 10.1080/13588265.2018.1489338.
  • H. M. Wen, T. Y. Reddy, S. R. Reid, and P. D. Soden, Indentation, penetration and perforation of composite laminates and sandwich panels under quasi-static and projectile loading, Kem., vol. 141–143, pp. 501–552, 1997. DOI: 10.4028/www.scientific.net/KEM.141-143.501.
  • R. Olsson, Engineering method for prediction of impact response and damage in sandwich panels, J. Sandwich Struct Mater., vol. 4, no. 1, pp. 3–29, 2002. DOI: 10.1177/1099636202004001192.
  • M. Sun, D. Wowk, C. Mechefske, and I. Yong, An analytical study of the plasticity of sandwich honeycomb panels subjected to low-velocity impact, Compos. Part B Eng., vol. 168, pp. 121–128, 2019. DOI: 10.1016/j.compositesb.2018.12.071.
  • Z. Wang, Z. Lu, H. Tian, S. Yao, and W. Zhou, Theoretical assessment methodology on axial compressed hexagonal honeycomb’ s energy absorption capability, Mech. Adv. Mater. Struct., vol. 23, no. 5, pp. 503–512, 2016. DOI: 10.1080/15376494.2014.994150.
  • B. Castanié, C. Bouvet, Y. Aminanda, J. J. Barrau, and P. Thevenet, Modelling of low-energy/low-velocity impact on Nomex honeycomb sandwich structures with metallic skins, Int. J. Impact Eng., vol. 35, no. 7, pp. 620–634, 2008. DOI: 10.1016/j.ijimpeng.2007.02.008.
  • C. Audibert, A. S. Andréani, É. Lainé, and J. C. Grandidier, Discrete modelling of low-velocity impact on Nomex® honeycomb sandwich structures with CFRP skins, Compos. Struct., vol. 207, pp. 108–118, 2019. DOI: 10.1016/j.compstruct.2018.09.047.
  • X. Huo, H. Liu, Q. Luo, G. Sun, and Q. Li, On low-velocity impact response of foam-core sandwich panels, Int. J. Mech. Sci., vol. 181, pp. 105681, 2020. DOI: 10.1016/j.ijmecsci.2020.105681.
  • S. A. Galehdari, M. Kadkhodayan, and S. Hadidi-Moud, Analytical, experimental and numerical study of a graded honeycomb structure under in-plane impact load with low velocity, Int. J. Crashworthiness., vol. 20, no. 4, pp. 387–400, 2015. DOI: 10.1080/13588265.2015.1018739.
  • S. Abrate, B. Castanié, and Y. D. S. Rajapakse, Dynamic Failure of Composite and Sandwich Structures., Springer Science & Business Media, Dordrecht, vol. 192, 2013.
  • V. Lopresto, A. Langella, and S. Abrate, Dynamic Response and Failure of Composite Materials and Structures, Woodhead Publishing, Duxford, 2017.
  • M. K. Faidzi, S. Abdullah, M. F. Abdullah, A. H. Azman, D. Hui, and S. S. K. Singh, Review of current trends for metal-based sandwich panel: Failure mechanisms and their contribution factors, Eng. Fail. Anal., vol. 123, pp. 105302, 2021. DOI: 10.1016/j.engfailanal.2021.105302.
  • T. Thomas, and G. Tiwari, Crushing behavior of honeycomb structure: a review, Int. J. Crashworthiness., vol. 24, no. 5, pp. 555–579, 2019. DOI: 10.1080/13588265.2018.1480471.
  • N. S. Ha, and G. Lu, A review of recent research on bio-inspired structures and materials for energy absorption applications, Compos. Part B Eng., vol. 181, pp. 107496, 2020. DOI: 10.1016/j.compositesb.2019.107496.
  • R. A. W. Mines, S. Tsopanos, Y. Shen, R. Hasan, and S. T. McKown, Drop weight impact behaviour of sandwich panels with metallic micro lattice cores, Int. J. Impact Eng., vol. 60, pp. 120–132, 2013. DOI: 10.1016/j.ijimpeng.2013.04.007.
  • V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches, Int. J. Impact Eng., vol. 77, pp. 97–107, 2015. DOI: 10.1016/j.ijimpeng.2014.11.012.
  • G. Epasto, F. Distefano, H. Mozafari, E. Linul, and V. Crupi, Nondestructive evaluation of aluminium foam panels subjected to impact loading, Appl. Sci., vol. 11, pp. 1–18, 2021.
  • G. Sun, D. Chen, X. Huo, G. Zheng, and Q. Li, Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels, Compos. Struct., vol. 184, pp. 110–124, 2018. DOI: 10.1016/j.compstruct.2017.09.025.
  • B. T. Cao, B. Hou, Y. L. Li, and H. Zhao, An experimental study on the impact behavior of multilayer sandwich with corrugated cores, Int. J. Solids Struct., vol. 109, pp. 33–45, 2017. DOI: 10.1016/j.ijsolstr.2017.01.005.
  • C. Kiliçaslan, M. Güden, I. K. Odaci, and A. Taşdemirci, The impact responses and the finite element modeling of layered trapezoidal corrugated aluminum core and aluminum sheet interlayer sandwich structures, Mater. Des., vol. 46, pp. 121–133, 2013. DOI: 10.1016/j.matdes.2012.09.059.
  • Yinghan Wu, Qiang Liu, Jie Fu, Qing Li, and David Hui, Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels, Compos. Part B Eng., vol. 121, pp. 122–133, 2017. DOI: 10.1016/j.compositesb.2017.03.030.
  • J. Susainathan, F. Eyma, E. De Luycker, A. Cantarel, and B. Castanie, Experimental investigation of impact behavior of wood-based sandwich structures, Compos. Part A Appl. Sci. Manuf., vol. 109, pp. 10–19, 2018. DOI: 10.1016/j.compositesa.2018.02.029.
  • I. M. Daniel, E. E. Gdoutos, and Y. D. S. Rajapakse, Major Accomplishments in Composite Materials and Sandwich Structures: An Anthology of ONR Sponsored Research, Springer Science & Business Media, New York, 2009.
  • S. Gopalakrishnan, and Y. Rajapakse, Blast Mitigation Strategies in Marine Composite and Sandwich Structures, Springer Nature, Singapore, 2018.
  • M. S. Hoo Fatt, and D. Sirivolu, Marine composite sandwich plates under air and water blasts, Mar. Struct., vol. 56, pp. 163–185, 2017. DOI: 10.1016/j.marstruc.2017.08.004.
  • M. S. Hoo Fatt, and K. S. Park, Dynamic models for low-velocity impact damage of composite sandwich panels – Part A: Deformation, Compos. Struct., vol. 52, no. 3-4, pp. 335–351, 2001. DOI: 10.1016/S0263-8223(01)00026-5.
  • M. S. Hoo Fatt, and K. S. Park, Dynamic models for low-velocity impact damage of composite sandwich panels – Part B: Damage initiation, Compos. Struct., vol. 52, no. 3-4, pp. 353–364, 2001. DOI: 10.1016/S0263-8223(01)00045-9.
  • P. Wanchoo, H. Matos, C. E. Rousseau, and A. Shukla, Investigations on air and underwater blast mitigation in polymeric composite structures – A review, Compos. Struct., vol. 263, pp. 113530, 2021. DOI: 10.1016/j.compstruct.2020.113530.
  • N. Gupta, S. E. Zeltmann, D. D. Luong, and M. Doddamani, Core materials for marine sandwich structures. in Marine Composites: Design and Performance, Woodhead Publishing, Duxford, 2018. pp. 187.
  • J. R. Vinson, Sandwich structures: Past, present, and future. in Sandwich Structures 7: Advancing with Sandwich Structures and Materials, Springer-Verlag, Berlin/Heidelberg, 2005. pp. 3–12.
  • D. Zenkert, A. Shipsha, P. Bull, and B. Hayman, Damage tolerance assessment of composite sandwich panels with localised damage, Compos. Sci. Technol., vol. 65, no. 15–16, pp. 2597–2611, 2005. DOI: 10.1016/j.compscitech.2005.05.026.
  • L. Calabrese, Di Bella G., and V. Fiore, Manufacture of marine composite sandwich structures. in Marine Applications of Advanced Fibre-Reinforced Composites, Woodhead Publishing, Cambridge, Elsevier, 2016. pp. 57–78.
  • F. Evegren, T. Hertzberg, and M. Rahm, Fire Tests of FRP Composite Ship Structures, 2016.
  • Engineering, production and life-cycle management for the complete construction of large-length FIBRE-based SHIPs, 2020.
  • C. Lothode, M. Durand, A. Leroyer, M. Visonneau, Y. Roux, and L. Dorez, Fluid structure interaction analysis of a hydrofoil, in MARINE V, Proceedings of the V International Conference on Computational Methods in Marine Engineering, 2013. pp. 491–501.
  • P. Davies, Marine composites, in Wiley Encyclopedia of Composites, Wiley, Hoboken, NJ, 2012. pp. 1–10.
  • R. Stewart, At the core of lightweight composites, Reinf. Plast., vol. 53, no. 3, pp. 30–35, 2009. DOI: 10.1016/S0034-3617(09)70112-2.
  • J. Klimke, and D. Rothmann, Carbon composite materials in modern yacht building, Reinf. Plast., vol. 54, no. 4, pp. 24–27, 2010. DOI: 10.1016/S0034-3617(10)70140-5.
  • Di Bella G., G. Galtieri, and C. Borsellino, Three-point flexural properties of bonded reinforcement elements for pleasure craft decks, Appl. Compos. Mater., vol. 25, no. 1, pp. 21–34, 2018. DOI: 10.1007/s10443-017-9605-9.
  • N. Kharghani, and C. Guedes Soares, Experimental and numerical study of hybrid steel-FRP balcony overhang of ships under shear and bending, Mar. Struct., vol. 60, pp. 15–33, 2018. DOI: 10.1016/j.marstruc.2018.03.003.
  • J. Cao, J. L. Grenestedt, and W. J. Maroun, Testing and analysis of a 6-m steel truss/composite skin hybrid ship hull model, Mar. Struct., vol. 19, no. 1, pp. 23–32, 2006. DOI: 10.1016/j.marstruc.2006.07.001.
  • J. Cao, J. L. Grenestedt, and W. J. Maroun, Steel truss/composite skin hybrid ship hull. Part I: Design and analysis, Compos. Part A Appl. Sci. Manuf., vol. 38, no. 7, pp. 1755–1762, 2007. DOI: 10.1016/j.compositesa.2006.11.004.
  • W. J. Maroun, J. Cao, and J. L. Grenestedt, Steel truss/composite skin hybrid ship hull, Part II: Manufacturing and sagging testing, Compos. Part A Appl. Sci. Manuf., vol. 38, no. 7, pp. 1763–1772, 2007. DOI: 10.1016/j.compositesa.2006.11.003.
  • W. Shen, B. Luo, R. Yan, H. Zeng, and L. Xu, The mechanical behavior of sandwich composite joints for ship structures, Ocean Eng., vol. 144, pp. 78–89, 2017. DOI: 10.1016/j.oceaneng.2017.08.039.
  • K. Zhang, D. Shi, W. Wang, and Q. Wang, Mechanical characterization of hybrid lattice-to-steel joint with pyramidal CFRP truss for marine application, Compos. Struct., vol. 160, pp. 1198–1204, 2017. DOI: 10.1016/j.compstruct.2016.11.005.
  • A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, Review of advanced composite structures for naval ships and submarines, Compos. Struct., vol. 53, no. 1, pp. 21–24, 2001. DOI: 10.1016/S0263-8223(00)00175-6.
  • I. Grabovac, and D. M. Turley, Present and future of composite materials for marine applications, ICCM/9, Met. Matrix Compos., vol. 1, pp. 89–96, 1993.
  • D. Mathijsen, Now is the time to make the change from metal to composites in naval shipbuilding, Reinf. Plast., vol. 60, no. 5, pp. 289–293, 2016. DOI: 10.1016/j.repl.2016.08.003.
  • P. Tran, A. Ghazlan, T. P. Nguyen, and R. Gravina, Experimental and theoretical damage assessment in advanced marine composites. in Woodhead Publishing Series in Composites Science and Engineering, R. Pemberton, J. Summerscales and J.B.T.-M.C. Graham-Jones, eds., Woodhead Publishing, Duxford, 2019. pp. 55–84
  • S. Job, Why not composites in ships?, Reinf. Plast., vol. 59, no. 2, pp. 90–93, 2015. DOI: 10.1016/j.repl.2014.12.047.
  • N. Gupta, S. E. Zeltmann, V. C. Shunmugasamy, and D. Pinisetty, Applications of polymer matrix syntactic foams, JOM., vol. 66, no. 2, pp. 245–254, 2014. DOI: 10.1007/s11837-013-0796-8.
  • T. Hertzberg, LASS, Lightweight Construction Applications at Sea, 2009.
  • V. Karatzas, N. Hjørnet, C. Berggreen, and J. J. Jensen, Retrofitting the superstructure of a large passenger ship using composites – A demonstration, in Proceedings of the 20th International Conference on Composite Materials (ICCM20), 2015.
  • M. Gaiotti, E. Ravina, C. M. Rizzo, and A. Ungaro, Testing and simulation of a bolted and bonded joint between steel deck and composite side shell plating of a naval vessel, Eng. Struct., vol. 172, pp. 228–238, 2018. DOI: 10.1016/j.engstruct.2018.06.008.
  • A. G. Gibson, The cost effective use of fibre reinforced composites offshore, 2003.
  • J. Summerscales, M. M. Singh, and K. Wittamore, Disposal of composite boats and other marine composites. in Marine Applications of Advanced Fibre-Reinforced Composites, Woodhead Publishing, Cambridge, 2016. pp. 185–213
  • C. Nasso, U. la. Monaca, A. Marin, S. Bertagna, and V. Bucci, The strip planking: An eco-friendly solution for the end-of-life of ships, in Technology and Science for the Ships of the Future – Proceedings of NAV 2018: 19th International Conference on Ship and Maritime Research, 2018. pp. 444–451.
  • AC75 Luna Rossa, the new flying monohull for the 36th America’s Cup presented by Prada. Available at https://www.lunarossachallenge.com/en/news/399_AC75-Luna-Rossa-the-new-flying-monohull-for-the-36th-Americas-Cup-presented-by-Prada.
  • J. Romanoff, A. Laakso, and P. Varsta, Improving the shear properties of web-core sandwich structures using filling material. in Proceedings of MARSTRUCT 2009, the 2nd International Conference on Marine Structures, Lisbon, Portugal, 16–18March 2009.
  • T. J. Grafton, and J. R. Weitzenböck, Steel-concrete-steel sandwich structures in ship and offshore engineering, in Advance Marine Structure – Proceedings of the 3rd International Conference on Marine Structures MARSTRUCT, 2011. pp. 549–558.
  • K. M. A. Sohel, J. Y. Richard Liew, J. B. Yan, M. H. Zhang, and K. S. Chia, Behavior of Steel–Concrete–Steel sandwich structures with lightweight cement composite and novel shear connectors, Compos. Struct., vol. 94, no. 12, pp. 3500–3509, 2012. DOI: 10.1016/j.compstruct.2012.05.023.
  • S. H. Sujiatanti, A. Zubaydi, and A. Budipriyanto, Finite element analysis of ship deck sandwich panel, AMM., vol. 874, pp. 134–139, 2018. DOI: 10.4028/www.scientific.net/AMM.874.134.
  • K. Niklas, and J. Kozak, Experimental investigation of Steel–Concrete–Polymer composite barrier for the ship internal tank construction, Ocean Eng., vol. 111, pp. 449–460, 2016. DOI: 10.1016/j.oceaneng.2015.11.030.
  • Y. H. Yu, B. G. Kim, and D. G. Lee, Cryogenic reliability of the sandwich insulation board for LNG ship, Compos. Struct., vol. 95, pp. 547–556, 2013. DOI: 10.1016/j.compstruct.2012.07.007.
  • J. Kortenoeven, B. Boon, and A. de Bruijn, Application of sandwich panels in design and building of dredging ships, J. Sh. Prod., vol. 24, no. 3, pp. 125–134, 2008. DOI: 10.5957/jsp.2008.24.3.125.
  • J. Romanoff, H. Naar, and P. Varsta, Interaction between web-core sandwich deck and hull girder of passenger ship, Mar. Syst. Ocean Technol., vol. 6, no. 1, pp. 39–45, 2011. DOI: 10.1007/BF03449255.
  • S. Mueller, and L. M. Volpone, Friction stir welding of steel/aluminium sandwich panels, Weld. Int., vol. 23, no. 9, pp. 699–705, 2009. DOI: 10.1080/09507110902843222.
  • T. Bitzer, Honeycomb marine applications, J. Reinf. Plast. Compos., vol. 13, no. 4, pp. 355–360, 1994. DOI: 10.1177/073168449401300406.
  • T. Bitzer, Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing, 1st ed. Springer, Dordrecht, 1997.
  • J. K. Paik, A. K. Thayamballi, and G. S. Kim, The strength characteristics of aluminum honeycomb sandwich panels, Thin-Walled Struct., vol. 35, no. 3, pp. 205–231, 1999. DOI: 10.1016/S0263-8231(99)00026-9.
  • Y. Chen, Z. P. Tong, H. X. Hua, Y. Wang, and H. Y. Gou, Experimental investigation on the dynamic response of scaled ship model with rubber sandwich coatings subjected to underwater explosion, Int. J. Impact Eng., vol. 36, no. 2, pp. 318–328, 2009. DOI: 10.1016/j.ijimpeng.2007.12.015.
  • T. Tuswan, K. Abdullah, A. Zubaydi, and A. Budipriyanto, Finite-element analysis for structural strength assessment of marine sandwich material on ship side-shell structure, Mater. Today Proc., vol. 13, pp. 109–114, 2019. DOI: 10.1016/j.matpr.2019.03.197.
  • C. E. Duty, et al., Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials, Rapid Prototyp. J., vol. 23, no. 1, pp. 181–189, 2017., DOI: 10.1108/RPJ-12-2015-0183.
  • S. W. Williams, F. Martina, A. C. Addison, J. Ding, G. Pardal, and P. Colegrove, Wire + Arc additive manufacturing, Mater. Sci. Technol. (United Kingdom)., vol. 32, no. 7, pp. 641–647, 2016. DOI: 10.1179/1743284715Y.0000000073.
  • A. Astarita, et al., Microstructure and mechanical properties of specimens produced using the wire-arc additive manufacturing process, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 0, pp. 1–11, 2019.
  • T. Russell, B. Heller, D. Jack, and D. Smith, Prediction of the fiber orientation state and the resulting structural and thermal properties of fiber reinforced additive manufactured composites fabricated using the big area additive manufacturing process, J. Compos. Sci., vol. 2, no. 2, pp. 26, 2018. DOI: 10.3390/jcs2020026.
  • A. J. Turner, M. Al Rifaie, A. Mian, and R. Srinivasan, Low-velocity impact behavior of sandwich structures with additively manufactured polymer lattice cores, J. Mater. Eng. Perform., vol. 27, no. 5, pp. 2505–2512, 2018. DOI: 10.1007/s11665-018-3322-x.
  • J. J. Andrew, J. Ubaid, F. Hafeez, A. Schiffer, and S. Kumar, Impact performance enhancement of honeycombs through additive manufacturing-enabled geometrical tailoring, Int. J. Impact Eng., vol. 134, pp. 103360, 2019. DOI: 10.1016/j.ijimpeng.2019.103360.
  • A. Beharic, R. Rodriguez Egui, and L. Yang, Drop-weight impact characteristics of additively manufactured sandwich structures with different cellular designs, Mater. Des., vol. 145, pp. 122–134, 2018. DOI: 10.1016/j.matdes.2018.02.066.
  • F. A. Santos, et al., Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs PETg, Compos. Struct., vol. 256, pp. 113–128, 2021.
  • D. Kang, S. Park, Y. Son, S. Yeon, S. H. Kim, and I. Kim, Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process, Mater. Des., vol. 175, pp. 107786, 2019. DOI: 10.1016/j.matdes.2019.107786.
  • M. Orme, I. Madera, M. Gschweitl, and M. Ferrari, Topology optimization for additive manufacturing as an enabler for light weight flight hardware, Designs., vol. 2, no. 4, pp. 51, 2018. DOI: 10.3390/designs2040051.
  • A. Ceruti, R. Ferrari, and A. Liverani, Design for additive manufacturing using LSWM: A CAD tool for the modelling of lightweight and lattice structures, Smart Innov. Syst. Technol., vol. 68, pp. 756–765, 2017.
  • D. A. Türk, et al., Additive manufacturing with composites for integrated aircraft structures, in International SAMPE Technical Conference, 2016-January, 2016.
  • C. Ferro, et al., A robust multifunctional sandwich panel design with trabecular structures by the use of additive manufacturing technology for a new de-icing system, Technologies., vol. 5, no. 2, pp. 35, 2017., DOI: 10.3390/technologies5020035.
  • D. Kong, Y. Zhang, and S. Liu, Convective heat transfer enhancement by novel honeycomb-core in sandwich panel exchanger fabricated by additive manufacturing, Appl. Therm. Eng., vol. 163, pp. 114408, 2019. DOI: 10.1016/j.applthermaleng.2019.114408.
  • H. N. G. Wadley, Multifunctional periodic cellular metals, Philos Trans A Math Phys Eng Sci., vol. 364, no. 1838, pp. 31–68, 2006. DOI: 10.1098/rsta.2005.1697.
  • A. Panesar, M. Abdi, D. Hickman, and I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing, Addit. Manuf., vol. 19, pp. 81–94, 2018. DOI: 10.1016/j.addma.2017.11.008.
  • V. N. Hoang, P. Tran, V. T. Vu, and H. Nguyen-Xuan, Design of lattice structures with direct multiscale topology optimization, Compos. Struct., vol. 252, pp. 112718, 2020. DOI: 10.1016/j.compstruct.2020.112718.
  • DNV GL, Class Guideline – Additive manufacturing – qualification and certification process for materials and components, 2017.
  • G. Palomba, T. Hone, D. Taylor, and V. Crupi, Bio-inspired protective structures for marine applications, Bioinspir. Biomim., vol. 15, no. 5, pp. 056016 2020. DOI: 10.1088/1748-3190/aba1d1.
  • P. Tran, T. D. Ngo, and P. Mendis, Bio-inspired composite structures subjected to underwater impulsive loading, Comput. Mater. Sci., vol. 82, pp. 134–139, 2014. DOI: 10.1016/j.commatsci.2013.09.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.