270
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

SH wave propagation in a periodic cement-based piezoelectric layered barrier

, , ORCID Icon, , & ORCID Icon
Pages 4902-4910 | Received 29 Apr 2021, Accepted 09 Jun 2021, Published online: 22 Jun 2021

References

  • S.L. Zhang, W.B. Wang, Z.Z. Wu, Y.T. Dai, Y.L. Li, and H.M. Dai, Effect of periodic pile row in subway vibration Isolation, Proc. Eng., vol. 199, pp. 302–309, 2017. DOI: 10.1016/j.proeng.2017.09.043.
  • J.T. Nelson, Recent developments in ground-borne noise and vibration control, J. Sound. Vib., vol. 193, no. 1, pp. 367–376, 1996. DOI: 10.1006/jsvi.1996.0277.
  • M. Panu, S.Y. Zhao, H. Toni, and V. Tuomas, Environmental noise monitoring using source classification in sensors, Appl. Acoust., vol. 129, pp. 258–267, 2018. DOI: 10.1016/j.apacoust.2017.08.006.
  • L. Andersen and S.R.K. Nielsen, Reduction of ground vibration by means of barriers or soil improvement along a railway track, Soil. Dyn. Earthq. Eng., vol. 25, no. 7–10, pp. 701–716, 2005. DOI: 10.1016/j.soildyn.2005.04.007.
  • T.G. Sitharam, S. Resmi, and F. Febin, Vibration isolation of buildings housed with sensitive equipment using open trenches- case study and numerical simulations, Soil. Dyn. Earthq. Eng., vol. 115, pp. 344–351, 2018. DOI: 10.1016/j.soildyn.2018.08.033.
  • A. Carlos, G. Luís, P.A. Mendes, A.P. Costa, D.D. Costa, and D.J. Soares, 3D FEM analysis of the effect of buried phononic crystal barriers on vibration mitigation, Eng. Struct., vol. 196, p. 109340, 2019. DOI: 10.1016/j.engstruct.2019.109340.
  • F. Yarmohammadi, R. Rafiee-Dehkharghani, C. Behnia, and A.J. Aref, Topology optimization of jet-grouted overlapping columns for mitigation of train-induced ground vibrations, Constr. Build. Mater., vol. 190, pp. 838–850, 2018. DOI: 10.1016/j.conbuildmat.2018.09.156.
  • M.S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett., vol. 71, no. 13, pp. 2022–2025, 1993. DOI: 10.1103/PhysRevLett.71.2022.
  • Z. Y. Liu, et al., Locally resonant sonic materials, Science, vol. 289, no. 5485, pp. 1734–1736, 2000. DOI: 10.1126/science.289.5485.1734.
  • M. Li, G.F. Jia, Z.B. Cheng, and Z.F. Shi, Generative adversarial network guided topology optimization of periodic structures via Subset Simulation, Compos. Struct., vol. 260, p. 113254, 2021. DOI: 10.1016/j.compstruct.2020.113254.
  • M.I. Hussein, M.J. Leamy, and M. Ruzzene, Discussion on of “Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook, Appl. Mech. Rev., vol. 66, no. 4, p. 040802, 2014. DOI: 10.1115/1.4027723.
  • Y.Y. Chen, F. Qian, F. Scarpa, L. Zuo, and X.Y. Zhuang, Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps, Mater. Des., vol. 175, p. 107813, 2019. DOI: 10.1016/j.matdes.2019.107813.
  • Y.J. Sun, et al., Band gap and experimental study in phononic crystals with super-cell structure, Results. Phys., vol. 13, p. 102200, 2019. DOI: 10.1016/j.rinp.2019.102200.
  • J.K. Huang, W. Liu, and Z.F. Shi, Surface-wave attenuation zone of layered periodic structures and feasible application in ground vibration reduction, Constr. Build. Mater., vol. 141, pp. 1–11, 2017. DOI: 10.1016/j.conbuildmat.2017.02.153.
  • X.B. Pu and Z.F. Shi, Broadband surface wave attenuation in periodic trench barriers, J. Sound. Vib., vol. 468, p. 115130, 2020. DOI: 10.1016/j.jsv.2019.115130.
  • X.B. Pu, Q.J. Meng, and Z.F. Shi, Experimental studies on surface-wave isolation by periodic wave barriers, Soil. Dyn. Earthq. Eng., vol. 130, p. 106000, 2020. DOI: 10.1016/j.soildyn.2019.106000.
  • M. Ma, B.L. Jiang, J. Gao, and W.N. Liu, Experimental study on attenuation zone of soil-periodic piles system, Soil. Dyn. Earthq. Eng., vol. 126, p. 105738, 2019. DOI: 10.1016/j.soildyn.2019.105738.
  • C. Zou, Y.M. Wang, X. Zhang, and Z.Y. Tao, Vibration isolation of over-track buildings in a metro depot by using trackside wave barriers, J. Build. Eng., vol. 30, p. 101270, 2020. DOI: 10.1016/j.jobe.2020.101270.
  • N. Jayasundere and B.V. Smith, Dielectric constant for binary piezoelectric 0-3 composites, J. Appl. Phys., vol. 73, no. 5, p. 2462–2466, 1993. DOI: 10.1063/1.354057.
  • Z.J. Li, D. Zhang, and K.R. Wu, Cement-based 0-3 piezoelectric composites, J. Am. Ceram. Soc., vol. 85, no. 2, pp. 305–313, 2004. DOI: 10.1111/j.1151-2916.2002.tb00089.x.
  • T.T. Zhang, J.Y. Li, and W.D. Liu, Electromechanical impact analysis of 2-2 cement-based piezoelectric sensor considering resistor, J. Intel. Mater. Syst. Struct., vol. 31, no. 9, pp. 1176–1192, 2020. DOI: 10.1177/1045389X20914391.
  • J.A. Santos, A.O. Sanches, J.L. Akasaki, M.M. Tashima, E. Longo, and J.A. Malmonge, Influence of PZT insertion on Portland cement curing process and piezoelectric properties of 0-3 cement-based composites by impedance spectroscopy, Constr. Build. Mater., vol. 238, p. 117675, 2020. DOI: 10.1016/j.conbuildmat.2019.117675.
  • C.J. Pang, D.S. Hou, and Z.J. Li, Piezoelectric and magnetoelectric behaviors of multifunctional cement-based laminated composites, Constr. Build. Mater., vol. 180, pp. 334–341, 2018. DOI: 10.1016/j.conbuildmat.2018.05.179.
  • W.K. Dong, W.G. Li, Z. Tao, and K.J. Wang, Piezoresistive properties of cement-based sensors: Review and perspective, Constr. Build. Mater., vol. 203, pp. 146–163, 2019. DOI: 10.1016/j.conbuildmat.2019.01.081.
  • L.L. Yuan, R.X. Wu, J.K. Du, J. Wang, and J.S. Yang, Thickness-shear and thickness-twist vibrations of rectangular quartz crystal plates with nonuniform thickness, Mech. Adv. Mater. Struct., vol. 24, no. 11, pp. 937–942, 2017. DOI: 10.1080/15376494.2016.1196796.
  • J.G. Hao, W. Li, J.W. Zhai, and H. Chen, Progress in high-strain perovskite piezoelectric ceramics, Mater. Sci. Eng. Rep., vol. 135, pp. 1–57, 2019. DOI: 10.1016/j.mser.2018.08.001.
  • W.J. Zhou, Muhammad, W.Q. Chen, Z.Y. Chen, and C.W. Lim, Actively controllable flexural wave band gaps in beam-type acoustic metamaterials with shunted piezoelectric patches, Eur. J. Mech. A-Solid, vol. 77, p. 103807, 2019. DOI: 10.1016/j.euromechsol.2019.103807.
  • G.Y. Yang, et al., Effects of initial stress on band gap of Love waves in a layered domain-inverted phononic crystal structure, Ultrasonics, vol. 106, p. 106145, 2020. DOI: 10.1016/j.ultras.2020.106145.
  • R.X. Feng and K.X. Liu, Tuning the band-gap of phononic crystals with an initial stress, Physica B, vol. 407, no. 12, pp. 2032–2036, 2012. DOI: 10.1016/j.physb.2012.01.135.
  • C. Othmani, H. Zhang, and C.F. Lü, Effects of initial stresses on guided wave propagation in multilayered PZT-4/PZT-5A composites: a polynomial expansion approach, Appl. Math. Model., vol. 78, pp. 148–168, 2020. DOI: 10.1016/j.apm.2019.10.017.
  • C. Othmani and H. Zhang, Lamb wave propagation in anisotropic multilayered piezoelectric laminates made of PVDF-θ° with initial stresses, Compos. Struct., vol. 240, p. 112085, 2020. DOI: 10.1016/j.compstruct.2020.112085.
  • J. Zhu, H.Y. Chen, B. Wu, W.Q. Chen, and O. Balogun, Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates, Int. J. of. Mech. Sci., vol. 146-147, pp. 81–90, 2018. DOI: 10.1016/j.ijmecsci.2018.07.038.
  • L. Liu, J.F. Zhao, Y.D. Pan, B. Bonello, and Z. Zhong, Theoretical study of SH-wave propagation in periodically-layered piezomagnetic structure, Int. J. Mech. Sci., vol. 85, pp. 45–54, 2014. DOI: 10.1016/j.ijmecsci.2014.04.028.
  • Z.Z. Yan, C.Q. Wei, and C.Z. Zhang, Elastic SH wave propagation in periodic layered composites with a periodic array of interface cracks, Acta. Mech. Solida. Sin., vol. 28, no. 5, pp. 453–463, 2015. DOI: 10.1016/S0894-9166(15)30041-0.
  • L.L. Yuan, J.K. Du, T.F. Ma, and J. Wang, Effects of viscous liquid on SH-SAW in layered magnetoelectric structures, Ultrasonics, vol. 53, no. 3, pp. 808–814, 2013. DOI: 10.1016/j.ultras.2012.11.012.
  • Y.J. Cao, Z.L. Hou, and Y.Y. Liu, Convergence problem of plane-wave expansion method for phononic crystals, Phys. Lett. A, vol. 327, no. 2–3, pp. 247–253, 2004. DOI: 10.1016/j.physleta.2004.05.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.