453
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Influence of pore sizes in 3D-scaffolds on mechanical properties of scaffolds and survival, distribution, and proliferation of human chondrocytes

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 4911-4922 | Received 30 Oct 2020, Accepted 10 Jun 2021, Published online: 01 Jul 2021

References

  • S. Asadpour, H. Yeganeh, F. Khademi, H. Ghanbari, and J. Ai, Resveratrol-loaded polyurethane nanofibrous scaffold: viability of endothelial and smooth muscle cells, Biomed. Mater., vol. 15, no. 1, pp. 015001, 2019. DOI: 10.1088/1748-605X/ab4e23.
  • S. Kargozar, F. Baino, S.J. Hoseini, J. Verdi, S. Asadpour, and M. Mozafari, Curcumin: footprints on cardiac tissue engineering, Expert Opin. Biol. Ther., vol. 19, no. 11, pp. 1199–1205, 2019. DOI: 10.1080/14712598.2019.1650912.
  • S. Asadpour, J. Ai, P. Davoudi, M. Ghorbani, M.J. Monfared, and H. Ghanbari, In vitro physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts, Biomed. Mater., vol. 13, no. 3, pp. 035007, 2018. DOI: 10.1088/1748-605X/aaa8b6.
  • H. Nosrati, et al., Corneal epithelium tissue engineering: recent advances in regeneration and replacement of corneal surface, Regen. Med., vol. 15, no. 8, pp. 2029–2044, 2020. DOI: 10.2217/rme-2019-0055.
  • A. Shafiee, Design and fabrication of three-dimensional printed scaffolds for cancer precision medicine, Tissue Eng. Part A, vol. 26, no. 5-6, pp. 305–317, 2020. DOI: 10.1089/ten.TEA.2019.0278.
  • C.A. Lahr, et al., A 3D-printed biomaterials-based platform to advance established therapy avenues against primary bone cancers, Acta Biomater., vol. 118, pp. 69–82, 2020. DOI: 10.1016/j.actbio.2020.10.006.
  • H.P. Dang, A. Shafiee, C.A. Lahr, T.R. Dargaville, and P.A. Tran, Local doxorubicin delivery via 3D‐printed porous scaffolds reduces systemic cytotoxicity and breast cancer recurrence in mice, Adv. Therap., vol. 3, no. 9, pp. 2000056, 2020. DOI: 10.1002/adtp.202000056.
  • A. Salerno, E. Di Maio, S. Iannace, and P. Netti, Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends, J. Porous Mater., vol. 19, no. 2, pp. 181–188, 2012. DOI: 10.1007/s10934-011-9458-9.
  • S.J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater., vol. 4, no. 7, pp. 518–524, 2005. DOI: 10.1038/nmat1421.
  • E. Chevalier, D. Chulia, C. Pouget, and M. Viana, Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field, J. Pharm. Sci., vol. 97, no. 3, pp. 1135–1154, 2008. DOI: 10.1002/jps.21059.
  • M. Rashtbar, et al. , Critical-sized full-thickness skin defect regeneration using ovine small intestinal submucosa with or without mesenchymal stem cells in rat model, J. Biomed. Mater. Res. B Appl. Biomater., vol. 106, no. 6, pp. 2177–2190, 2018. DOI: 10.1002/jbm.b.34019.
  • S. Asadpour, H. Yeganeh, J. Ai, and H.A. Ghanbari, Novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications, J. Mater. Sci., vol. 53, no. 14, pp. 9913–9927, 2018. DOI: 10.1007/s10853-018-2321-5.
  • V. Karageorgiou, and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005. DOI: 10.1016/j.biomaterials.2005.02.002.
  • H.-J. Sung, C. Meredith, C. Johnson, and Z.S. Galis, The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis, Biomaterials, vol. 25, no. 26, pp. 5735–5742, 2004. DOI: 10.1016/j.biomaterials.2004.01.066.
  • M. Jalali Monfared, et al. , Transplantation of miR-219 overexpressed human endometrial stem cells encapsulated in fibrin hydrogel in spinal cord injury, J. Cell. Physiol., vol. 234, no. 10, pp. 18887–18896, 2019. DOI: 10.1002/jcp.28527.
  • S. Asadpour, et al., Polyurethane-polycaprolactone blend patches: scaffold characterization and cardiomyoblast adhesion, proliferation, and function, ACS Biomater. Sci Eng., vol. 4, no. 12, pp. 4299–4310, 2018. DOI: 10.1021/acsbiomaterials.8b00848.
  • C.M. Murphy, M.G. Haugh, and F.J. O'brien , The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials, vol. 31, no. 3, pp. 461–466, 2010. DOI: 10.1016/j.biomaterials.2009.09.063.
  • S. Van Bael, et al., The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomater., vol. 8, no. 7, pp. 2824–2834, 2012. DOI: 10.1016/j.actbio.2012.04.001.
  • I. Yannas, Tissue regeneration by use of collagen-glycosaminoglycan copolymers, Clin. Mater., vol. 9, no. 3–4, pp. 179–187, 1992. DOI: 10.1016/0267-6605(92)90098-E.
  • J. Heino, The collagen receptor integrins have distinct ligand recognition and signaling functions, Matrix Biol., vol. 19, no. 4, pp. 319–323, 2000. DOI: 10.1016/S0945-053X(00)00076-7.
  • S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, and A.F. Horwitz, Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness, Nature, vol. 385, no. 6616, pp. 537–540, 1997. DOI: 10.1038/385537a0.
  • A. Rezania, and K.E. Healy, Integrin subunits responsible for adhesion of human osteoblast‐like cells to biomimetic peptide surfaces, J. Orthop. Res., vol. 17, no. 4, pp. 615–623, 1999. DOI: 10.1002/jor.1100170423.
  • K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials, vol. 21, no. 7, pp. 667–681, 2000. DOI: 10.1016/S0142-9612(99)00242-2.
  • B.D. Boyan, T.W. Hummert, D.D. Dean, and Z. Schwartz, Role of material surfaces in regulating bone and cartilage cell response, Biomaterials, vol. 17, no. 2, pp. 137–146, 1996. DOI: 10.1016/0142-9612(96)85758-9.
  • B.A. Harley, H.-D. Kim, M.H. Zaman, I.V. Yannas, D.A. Lauffenburger, and L.J. Gibson, Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions, Biophys. J., vol. 95, no. 8, pp. 4013–4024, 2008. DOI: 10.1529/biophysj.107.122598.
  • K.-S. Han, et al., Effect of pore sizes of silk scaffolds for cartilage tissue engineering, Macromol. Res., vol. 23, no. 12, pp. 1091–1097, 2015. DOI: 10.1007/s13233-015-3156-4.
  • B.J. Huang, J.C. Hu, and K.A. Athanasiou, Cell-based tissue engineering strategies used in the clinical repair of articular cartilage, Biomaterials, vol. 98, pp. 1–22, 2016. DOI: 10.1016/j.biomaterials.2016.04.018.
  • Y. Zhang, J. Yu, K. Ren, J. Zuo, J. Ding, and X. Chen, Thermosensitive hydrogels as scaffolds for cartilage tissue engineering, Biomacromolecules, vol. 20, no. 4, pp. 1478–1492, 2019. DOI: 10.1021/acs.biomac.9b00043.
  • T. Woodfield, C.V. Blitterswijk, J.D. Wijn, T. Sims, A. Hollander, and J. Riesle, Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs, Tissue Eng., vol. 11, no. 9-10, pp. 1297–1311, 2005. DOI: 10.1089/ten.2005.11.1297.
  • K. Ghosal, A. Manakhov, L. Zajíčková, and S. Thomas , Structural and surface compatibility study of modified electrospun poly(ε-caprolactone) (PCL) composites for skin tissue engineering, Aaps Pharmscitech., vol. 18, no. 1, pp. 72–81, 2017. DOI: 10.1208/s12249-016-0500-8.
  • S. Boroumand, S. Asadpour, A. Akbarzadeh, R. Faridi-Majidi, and H. Ghanbari, Heart valve tissue engineering: an overview of heart valve decellularization processes, Regen. Med., vol. 13, no. 1, pp. 41–54, 2018. DOI: 10.2217/rme-2017-0061.
  • A. Matsiko, J.P. Gleeson, and F.J. O'Brien, Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition, Tissue Eng. Part A, vol. 21, no. 3–4, pp. 486–497, 2015. DOI: 10.1089/ten.TEA.2013.0545.
  • Q. Zhang, H. Lu, N. Kawazoe, and G. Chen, Pore size effect of collagen scaffolds on cartilage regeneration, Acta Biomater., vol. 10, no. 5, pp. 2005–2013, 2014. DOI: 10.1016/j.actbio.2013.12.042.
  • J.S. Mao, H.F. Liu, Y.J. Yin, and K.D. Yao, The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods, Biomaterials, vol. 24, no. 9, pp. 1621–1629, 2003. DOI: 10.1016/S0142-9612(02)00549-5.
  • S. Ghodrat, S.J. Hoseini, S. Asadpour, S. Nazarnezhad, E.F. Alizadeh, and S. Kargozar, Stem cell‐based therapies for cardiac diseases: The critical role of angiogenic exosomes, BioFactors. 2021. DOI: 10.1002/biof.1717.
  • M.K. Tate, and U. Knothe, An ex vivo model to study transport processes and fluid flow in loaded bone, J. Biomech., vol. 33, no. 2, pp. 247–254, 2000. DOI: 10.1016/S0021-9290(99)00143-8.
  • J.M. Mansour, and V.C. Mow, The permeability of articular cartilage under compressive strain and at high pressures. J. Bone Joint Surg. Am., vol. 58, no. 4, pp. 509–516, 1976.
  • A. Maroudas, P. Bullough, S. Swanson, and M. Freeman, The permeability of articular cartilage. J. Bone Joint Surg. Br., vol. 50, no. 1, pp. 166–177, 1968.
  • K. Vadodaria, A. Kulkarni, E. Santhini, and P. Vasudevan, Materials and structures used in meniscus repair and regeneration: a review, Biomedicine (Taipei), vol. 9, no. 1, pp. 2, 2019. DOI: 10.1051/bmdcn/2019090102.
  • Y. Chen, et al., Current advances in the development of natural meniscus scaffolds: innovative approaches to decellularization and recellularization, Cell Tissue Res., vol. 370, no. 1, pp. 41–52, 2017. DOI: 10.1007/s00441-017-2605-0.
  • Z. Abpeikar, et al., Macroporous scaffold surface modified with biological macromolecules and piroxicam-loaded gelatin nanofibers toward meniscus cartilage repair, Int. J. Biol. Macromol., vol. 183, pp. 1327–1345, 2021. DOI: 10.1016/j.ijbiomac.2021.04.151.
  • A. Maroudas, Physicochemical properties of cartilage in the light of ion exchange theory, Biophys. J., vol. 8, no. 5, pp. 575–595, 1968. DOI: 10.1016/S0006-3495(68)86509-9.
  • I. Owan, et al., Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain, Am. J. Physiol., vol. 273, no. 3 Pt 1, pp. C810–C5, 1997. DOI: 10.1152/ajpcell.1997.273.3.C810.
  • M. Hillsley, and J. Frangos, Bone tissue engineering: the role of interstitial fluid flow, Biotechnol. Bioeng., vol. 43, no. 7, pp. 573–581, 1994. DOI: 10.1002/bit.260430706.
  • P. Prendergast, R. Huiskes, and K. Søballe, Biophysical stimuli on cells during tissue differentiation at implant interfaces, J. Biomech., vol. 30, no. 6, pp. 539–548, 1997. DOI: 10.1016/S0021-9290(96)00140-6.
  • C. Agrawal, J. McKinney, D. Lanctot, and K. Athanasiou, Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering, Biomaterials, vol. 21, no. 23, pp. 2443–2452, 2000. DOI: 10.1016/S0142-9612(00)00112-5.
  • F.J. O'Brien, B.A. Harley, M.A. Waller, I.V. Yannas, L.J. Gibson, and P.J. Prendergast, The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering, Technol. Health Care, vol. 15, no. 1, pp. 3–17, 2007. DOI: 10.3233/THC-2007-15102.
  • C.J. Little, N.K. Bawolin, and X. Chen, Mechanical properties of natural cartilage and tissue-engineered constructs, Tissue Eng. Part B Rev., vol. 17, no. 4, pp. 213–227, 2011. DOI: 10.1089/ten.TEB.2010.0572.
  • H. Luan, et al., The effect of pore size and porosity of Ti6Al4V scaffolds on MC3T3-E1 cells and tissue in rabbits, Sci. China Technol. Sci., vol. 62, no. 7, pp. 1160–1168, 2019. DOI: 10.1007/s11431-018-9352-8.
  • Y. Nashchekina, et al., Protein expression by bone mesenchymal stem cells cultivated in PLLA scaffolds with different pore geometry, Int. J. Polym. Mater. Polym. Biomater., vol. 69, no. 4, pp. 248–257, 2020. DOI: 10.1080/00914037.2018.1563081.
  • Z.-Z. Zhang, et al., Role of scaffold mean pore size in meniscus regeneration, Acta Biomater., vol. 43, pp. 314–326, 2016. DOI: 10.1016/j.actbio.2016.07.050.
  • T. Mygind, et al., Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds, Biomaterials, vol. 28, no. 6, pp. 1036–1047, 2007. DOI: 10.1016/j.biomaterials.2006.10.003.
  • Y. Takahashi, and Y. Tabata, Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells, J. Biomater. Sci. Polym. Ed., vol. 15, no. 1, pp. 41–57, 2004. DOI: 10.1163/156856204322752228.
  • H.L. Holtorf, N. Datta, J.A. Jansen, and A.G. Mikos, Scaffold mesh size affects the osteoblastic differentiation of seeded marrow stromal cells cultured in a flow perfusion bioreactor, J. Biomed. Mater. Res. A, vol. 74, no. 2, pp. 171–180, 2005. DOI: 10.1002/jbm.a.30330.
  • M.M. Nava, L. Draghi, C. Giordano, and R. Pietrabissa, The effect of scaffold pore size in cartilage tissue engineering, J. Appl. Biomater. Funct. Mater., vol. 14, no. 3, pp. e223–e9, 2016. DOI: 10.5301/jabfm.5000302.
  • S.-M. Lien, L.-Y. Ko, and T.-J. Huang, Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering, Acta Biomater., vol. 5, no. 2, pp. 670–679, 2009. DOI: 10.1016/j.actbio.2008.09.020.
  • V.C. Mow, and X.E. Guo, Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies, Annu. Rev. Biomed. Eng., vol. 4, no. 1, pp. 175–209, 2002. DOI: 10.1146/annurev.bioeng.4.110701.120309.
  • V.C. Mow, M. Gibbs, W.M. Lai, W. Zhu, and K.A. Athanasiou, Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study, J. Biomech., vol. 22, no. 8-9, pp. 853–861, 1989. DOI: 10.1016/0021-9290(89)90069-9.
  • J. Jurvelin, M. Buschmann, and E. Hunziker, Optical and mechanical determination of Poisson's ratio of adult bovine humeral articular cartilage, J Biomech., vol. 30, no. 3, pp. 235–241, 1997. DOI: 10.1016/S0021-9290(96)00133-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.