201
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Parametric investigation of effective elastic properties of exfoliated polymer/clay nanocomposites using a developed mean-field model

&
Pages 4952-4963 | Received 15 Mar 2021, Accepted 10 Jun 2021, Published online: 09 Jul 2021

References

  • N. Domun, H. Hadavinia, T. Zhang, T. Sainsbury, G. Liaghat, and S. Vahid , Improving the fracture toughness and the strength of epoxy using nanomaterials-a review of the current status, Nanoscale, vol. 7, no. 23, pp. 10294–10329, 2015. DOI: 10.1039/c5nr01354b.
  • F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, J. Compos. Mater., vol. 40, no. 17, pp. 1511–1575, 2006. DOI: 10.1177/0021998306067321.
  • Y. Zare, Assumption of interphase properties in classical Christensen-Lo model for Young’s modulus of polymer nanocomposites reinforced with spherical nanoparticles, RSC Adv., vol. 5, no. 116, pp. 95532–95538, 2015. DOI: 10.1039/C5RA19330C.
  • Y. Zare and K. Y. Rhee, The mechanical behavior of CNT reinforced nanocomposites assuming imperfect interfacial bonding between matrix and nanoparticles and percolation of interphase regions, Compos. Sci. Technol., vol. 144, pp. 18–25, 2017. DOI: 10.1016/j.compscitech.2017.03.012.
  • J. Payandehpeyman, G. Majzoobi, and R. Bagheri, Experimental and analytical investigations into the effects of inorganic filler on the polypropylene nanocomposite microhardness, J. Thermoplast. Compos. Mater., vol. 30, no. 11, pp. 1484–1502, 2017. DOI: 10.1177/0892705716644668.
  • L. Papadopoulos, et al., Synthesis and characterization of novel polymer/clay nanocomposites based on poly (butylene 2, 5-furan dicarboxylate), Appl. Clay Sci., vol. 190, pp. 105588, 2020. DOI: 10.1016/j.clay.2020.105588.
  • A. Okada and A. Usuki, Twenty years of polymer-clay nanocomposites, Macromol. Mater. Eng., vol. 291, no. 12, pp. 1449–1476, 2006. DOI: 10.1002/mame.200600260.
  • T. Fornes, D. Hunter, and D. Paul, Effect of sodium montmorillonite source on nylon 6/clay nanocomposites, Polymer, vol. 45, no. 7, pp. 2321–2331, 2004. DOI: 10.1016/j.polymer.2004.01.061.
  • M. Gómez, H. Palza, and R. Quijada, Influence of organically-modified montmorillonite and synthesized layered silica nanoparticles on the properties of polypropylene and polyamide-6 nanocomposites, Polymers, vol. 8, no. 11, pp. 386, 2016. DOI: 10.3390/polym8110386.
  • H.-L. Tyan, Y.-C. Liu, and K.-H. Wei, Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay, Chem. Mater., vol. 11, no. 7, pp. 1942–1947, 1999. DOI: 10.1021/cm990187x.
  • J. Hári, F. Horváth, J. Móczó, K. Renner, and B. Pukánszky, Competitive interactions, structure and properties in polymer/layered silicate nanocomposites, Express Polym. Lett., vol. 11, no. 6, pp. 479–492, 2017. DOI: 10.3144/expresspolymlett.2017.45.
  • A. Drozdov, A.-L. H. Lejre, and J. d. Christiansen, Viscoelasticity, viscoplasticity, and creep failure of polypropylene/clay nanocomposites, Compos. Sci. Technol., vol. 69, no. 15-16, pp. 2596–2603, 2009. DOI: 10.1016/j.compscitech.2009.07.018.
  • A. Drozdov, J. de Claville Christiansen, and R. Klitkou, Volume growth and viscoplasticity of polymer/clay nanocomposites: Experiments and modeling, Int. J. Appl. Math. Mech., vol. 7, no. 17, pp. 87–110, 2011.
  • M. F. Omar, H. M. Akil, Z. A. Ahmad, M. F. A. Rasyid, and N. Noriman, Effect of ion exchange treatment on dynamic compression properties of polypropylene/muscovite-layered silicate composites, J. Thermoplast. Compos. Mater., vol. 29, no. 6, pp. 867–889, 2016. DOI: 10.1177/0892705714535796.
  • K. Wang, N. Bahlouli, R. M. Boumbimba, F. Addiego, and Y. Rémond, Specimen geometry effect on the deformation mechanisms of polypropylene-based composites under impact loading at different temperatures, J. Dyn. Behav. Mater., vol. 2, no. 1, pp. 101–111, 2016. DOI: 10.1007/s40870-016-0049-3.
  • H. G. Hosseinabadi, K. Khederlou, J. Payandehpeyman, and R. Bagheri, On variations of the interphase thickness and the slope of strengthening by clay addition in exfoliated polymer-clay nanocomposites, Polymer, vol. 90, pp. 302–308, 2016. DOI: 10.1016/j.polymer.2016.03.021.
  • J. Payandehpeyman, G. H. Majzoobi, and R. Bagheri, Determination of the extended drucker–prager parameters using the surrogate-based optimization method for polypropylene nanocomposites, J. Strain Anal. Eng. Des., vol. 51, no. 3, pp. 220–232, 2016. DOI: 10.1177/0309324715627564.
  • H. Salam and Y. Dong, Theoretical modelling analysis on tensile properties of bioepoxy/clay nanocomposites using epoxidised soybean oils, J. Nanomater., vol. 2019, pp. 1–20, 2019. DOI: 10.1155/2019/4074869.
  • M. J. Clifford and T. Wan, Fibre reinforced nanocomposites: Mechanical properties of pa6/clay and glass fibre/pa6/clay nanocomposites, Polymer, vol. 51, no. 2, pp. 535–539, 2010. DOI: 10.1016/j.polymer.2009.11.046.
  • Y. Zare, A simple technique for determination of interphase properties in polymer nanocomposites reinforced with spherical nanoparticles, Polymer, vol. 72, pp. 93–97, 2015. DOI: 10.1016/j.polymer.2015.06.060.
  • Y. Zare, The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology, Compos. Part A: Appl. Sci. Manuf., vol. 91, pp. 127–132, 2016. DOI: 10.1016/j.compositesa.2016.10.003.
  • M. Bazmara, M. Silani, and I. Dayyani, Effect of functionally-graded interphase on the elasto-plastic behavior of nylon-6/clay nanocomposites; a numerical study, Defence Technol., vol. 17, no. 1, pp. 177–184, 2021. DOI: 10.1016/j.dt.2020.03.003.
  • M. Pahlavanpour, H. Moussaddy, E. Ghossein, P. Hubert, and M. Lévesque, Prediction of elastic properties in polymer–clay nanocomposites: Analytical homogenization methods and 3d finite element modeling, Comput. Mater. Sci., vol. 79, pp. 206–215, 2013. DOI: 10.1016/j.commatsci.2013.06.029.
  • Y. Zare, Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer-filler interphase, J Colloid Interface Sci., vol. 467, pp. 165–169, 2016. DOI: 10.1016/j.jcis.2016.01.022.
  • A. K. Pandey, T. Pal, R. Sharma, and K. K. Kar, Study of matrix–filler interaction through correlations between structural and viscoelastic properties of carbonous-filler/polymer-matrix composites, J. Appl. Polym. Sci., vol. 137, no. 27, pp. 48660, 2020. DOI: 10.1002/app.48660.
  • T. T. Zhu, C. H. Zhou, F. B. Kabwe, Q. Q. Wu, C. S. Li, and J. R. Zhang, Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites, Appl. Clay Sci., vol. 169, pp. 48–66, 2019. DOI: 10.1016/j.clay.2018.12.006.
  • P. Motamedi and R. Bagheri, Investigation of the nanostructure and mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites, Materials & Design., vol. 31, no. 4, pp. 1776–1784, 2010. DOI: 10.1016/j.matdes.2009.11.013.
  • E. Tamjid, R. Bagheri, M. Vossoughi, and A. Simchi, Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites, Mater. Sci. Eng. C., vol. 31, no. 7, pp. 1526–1533, 2011. DOI: 10.1016/j.msec.2011.06.013.
  • V. S. Vo, V.-H. Nguyen, S. Mahouche-Chergui, B. Carbonnier, and S. Naili, Estimation of effective elastic properties of polymer/clay nanocomposites: A parametric study, Compos. Part B: Eng., vol. 152, pp. 139–150, 2018. DOI: 10.1016/j.compositesb.2018.06.018.
  • Y. Zare, S. Rhim, H. Garmabi, and K. Y. Rhee, A simple model for constant storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites at low frequencies assuming the properties of interphase regions and networks, J. Mech. Behav. Biomed. Mater., vol. 80, pp. 164–170, 2018. DOI: 10.1016/j.jmbbm.2018.01.037.
  • H. Xia Li, Y. Zare, and K. Y. Rhee, The percolation threshold for tensile strength of polymer/CNT nanocomposites assuming filler network and interphase regions, Mater. Chem. Phys., vol. 207, pp. 76–83, 2018. DOI: 10.1016/j.matchemphys.2017.12.053.
  • A. Mesbah, et al., Experimental characterization and modeling stiffness of polymer/clay nanocomposites within a hierarchical multiscale framework, J. Appl. Polym. Sci., vol. 114, no. 5, pp. 3274–3291, 2009. DOI: 10.1002/app.30547.
  • C. Wolf, H. Angellier-Coussy, N. Gontard, F. Doghieri, and V. Guillard, How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review, J. Membr. Sci., vol. 556, pp. 393–418, 2018. DOI: 10.1016/j.memsci.2018.03.085.
  • T. Takeda, Y. Shindo, Y. Kuronuma, and F. Narita, Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites, Polymer, vol. 52, no. 17, pp. 3852–3856, 2011. DOI: 10.1016/j.polymer.2011.06.046.
  • B. Raju, S. Hiremath, and D. R. Mahapatra, A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites, Compos. Struct., vol. 204, pp. 607–619, 2018. DOI: 10.1016/j.compstruct.2018.07.125.
  • J. H. Affdl and J. Kardos, The Halpin-Tsai equations: A review, Polym. Eng. Sci., vol. 16, no. 5, pp. 344–352, 1976. DOI: 10.1002/pen.760160512.
  • J. C. Halpin, Primer on Composite Materials Analysis (Revised), CRC Press, Boca Raton, 1992.
  • M. M. Shokrieh and H. Moshrefzadeh-Sani, On the constant parameters of Halpin-Tsai equation, Polymer, vol. 106, pp. 14–20, 2016. DOI: 10.1016/j.polymer.2016.10.049.
  • T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., vol. 21, no. 5, pp. 571–574, 1973. DOI: 10.1016/0001-6160(73)90064-3.
  • F. Zhu, C. Park, and G. J. Yun, An extended mori-tanaka micromechanics model for wavy cnt nanocomposites with interface damage, Mech. Adv. Mater. Struct., vol. 28, no. 3, pp. 295–307, 2021. DOI: 10.1080/15376494.2018.1562135.
  • S. G. Abaimov, A. A. Khudyakova, and S. V. Lomov, On the closed form expression of the Mori–Tanaka theory prediction for the engineering constants of a unidirectional fiber-reinforced ply, Compos. Struct., vol. 142, pp. 1–6, 2016. DOI: 10.1016/j.compstruct.2016.02.001.
  • E. Sadeghpour, Y. Guo, D. Chua, and V. P. Shim, A modified mori-tanaka approach incorporating filler-matrix interface failure to model graphene/polymer nanocomposites, Int. J. Mech. Sci., vol. 180, pp. 105699, 2020. DOI: 10.1016/j.ijmecsci.2020.105699.
  • E. Osoka and O. Onukwuli, A modified halpin-tsai model for estimating the modulus of natural fiber reinforced composites, Int. J. Eng. Sci. Invent., vol. 7, no. 5, pp. 63–70, 2018.
  • Y. Zare, An approach to study the roles of percolation threshold and interphase in tensile modulus of polymer/clay nanocomposites, J Colloid Interface Sci., vol. 486, pp. 249–254, 2017. DOI: 10.1016/j.jcis.2016.09.080. https://linkinghub.elsevier.com/retrieve/pii/S0021979716307457.
  • Y. Zare, Effects of imperfect interfacial adhesion between polymer and nanoparticles on the tensile modulus of clay/polymer nanocomposites, Appl. Clay Sci., vol. 129, pp. 65–70, 2016. DOI: 10.1016/j.clay.2016.05.002.
  • K. Yan, Q. Xue, Q. Zheng, and L. Hao, The interface effect of the effective electrical conductivity of carbon nanotube composites, Nanotechnology, vol. 18, no. 25, pp. 255705, 2007. DOI: 10.1088/0957-4484/18/25/255705.
  • J. Payandehpeyman, M. Mazaheri, and M. Khamehchi, Prediction of electrical conductivity of polymer-graphene nanocomposites by developing an analytical model considering interphase, tunneling and geometry effects, Compos. Commun., vol. 21, pp. 100364, 2020. DOI: 10.1016/j.coco.2020.100364.
  • M. Mazaheri, J. Payandehpeyman, and M. Khamehchi, A developed theoretical model for effective electrical conductivity and percolation behavior of polymer-graphene nanocomposites with various exfoliated filleted nanoplatelets, Carbon, vol. 169, pp. 264–275, 2020. DOI: 10.1016/j.carbon.2020.07.059. http://www.sciencedirect.com/science/article/pii/S000862232030720X.
  • E. Akbarinezhad, M. Ebrahimi, and F. Sharif, Synthesis of exfoliated polyaniline – clay nanocomposite in supercritical CO2, J. Supercrit. Fluids, vol. 59, pp. 124–130, 2011. DOI: 10.1016/j.supflu.2011.08.010.
  • K. F. El-Nemr, M. A. Ali, M. M. Hassan, and H. E. Hamed, Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite, Radiochim. Acta, vol. 107, no. 3, pp. 221–232, 2019. DOI: 10.1515/ract-2018-3035.
  • M. Heydari-Meybodi, S. Saber-Samandari, and M. Sadighi, 3D multiscale modeling to predict the elastic modulus of polymer/nanoclay composites considering realistic interphase property, Compos. Interfaces, vol. 23, no. 7, pp. 641–661, 2016. DOI: 10.1080/09276440.2016.1166742.
  • T. Fornes and D. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer, vol. 44, no. 17, pp. 4993–5013, 2003. DOI: 10.1016/S0032-3861(03)00471-3.
  • P. R. Budarapu, X. Zhuang, T. Rabczuk, and S. P. Bordas, Multiscale modeling of material failure: Theory and computational methods. In: Advances in Applied Mechanics, Vol. 52, pp. 1–103. Amsterdam, Elsevier, 2019.
  • A. Lagarkov and A. Sarychev, Electromagnetic properties of composites containing elongated conducting inclusions, Phys. Rev. B Condens. Matter, vol. 53, no. 10, pp. 6318–6336, 1996. DOI: 10.1103/physrevb.53.6318.
  • Q. Xue, A novel model of dielectric constant of two-phase composites with interfacial shells, Int. J. Mod. Phys. B., vol. 16, no. 25, pp. 3855–3863, 2002. DOI: 10.1142/S0217979202013134.
  • Q. Xue and W.-M. Xu, A model of thermal conductivity of nanofluids with interfacial shells, Mater. Chem. Phys., vol. 90, no. 2-3, pp. 298–301, 2005. DOI: 10.1016/j.matchemphys.2004.05.029.
  • A. Aharoni, Demagnetizing factors for rectangular ferromagnetic prisms, J. Appl. Phys., vol. 83, no. 6, pp. 3432–3434, 1998. DOI: 10.1063/1.367113.
  • M. Hassanzadeh-Aghdam, M. Mahmoodi, and R. Ansari, Micromechanical characterizing the effective elastic properties of general randomly distributed cnt–reinforced polymer nanocomposites, Probab. Eng. Mech., vol. 53, pp. 39–51, 2018. DOI: 10.1016/j.probengmech.2018.05.004.
  • K. Majdzadeh-Ardakani and B. Nazari, Improving the mechanical properties of thermoplastic starch/poly (vinyl alcohol)/clay nanocomposites, Compos. Sci. Technol., vol. 70, no. 10, pp. 1557–1563, 2010. DOI: 10.1016/j.compscitech.2010.05.022.
  • S. Saber-Samandari, A. A. Khatibi, and D. Basic, An experimental study on clay/epoxy nanocomposites produced in a centrifuge, Compos. Part B: Eng., vol. 38, no. 1, pp. 102–107, 2007. DOI: 10.1016/j.compositesb.2006.03.010.
  • K. Anoukou, F. Zaïri, M. Naït-Abdelaziz, A. Zaoui, T. Messager, and J. M. Gloaguen, On the overall elastic moduli of polymer–clay nanocomposite materials using a self-consistent approach. Part II: Experimental verification, Compos. Sci. Technol., vol. 71, no. 2, pp. 206–215, 2011. DOI: 10.1016/j.compscitech.2010.11.020.
  • S. Song, Y. Chen, Z. Su, C. Quan, and V. B. Tan, Effects of clay structural parameters and gallery strength on the damage behavior of epoxy/clay nanocomposites, Compos. Sci. Technol., vol. 85, pp. 50–57, 2013. DOI: 10.1016/j.compscitech.2013.05.019.
  • H. Moshrefzadeh-Sani and M. M. Shokrieh, Strength calculation of graphene/polymer nanocomposites using the combined laminate analogy and progressive damage model, Mech. Mater., vol. 127, pp. 48–54, 2018. DOI: 10.1016/j.mechmat.2018.09.002.
  • E. Bilotti, R. Zhang, H. Deng, F. Quero, H. Fischer, and T. Peijs, Sepiolite needle-like clay for pa6 nanocomposites: An alternative to layered silicates?, Compos. Sci. Technol., vol. 69, no. 15-16, pp. 2587–2595, 2009. DOI: 10.1016/j.compscitech.2009.07.016.
  • N. Yousefi, M. M. Gudarzi, Q. Zheng, S. H. Aboutalebi, F. Sharif, and J.-K. Kim, Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites, J. Mater. Chem., vol. 22, no. 25, pp. 12709–12717, 2012. DOI: 10.1039/c2jm30590a.
  • S. Y. Kim, Y. J. Noh, and J. Yu, Prediction and experimental validation of electrical percolation by applying a modified micromechanics model considering multiple heterogeneous inclusions, Compos. Sci. Technol., vol. 106, pp. 156–162, 2015. DOI: 10.1016/j.compscitech.2014.11.015.
  • M. Terrones, et al., Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, Nano Today, vol. 5, no. 4, pp. 351–372, 2010. DOI: 10.1016/j.nantod.2010.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.