171
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

SPH-based simulation of micro-impacts in human-tissue surrogate: A preliminary study on multilayered structure

, , &
Pages 5059-5068 | Received 08 Apr 2021, Accepted 18 Jun 2021, Published online: 06 Jul 2021

References

  • M. L. Fackler and J.A. Malinowski, The wound profile: a visual method for quantifying gunshot wound components, J. Trauma., vol. 25, no. 6, pp. 522–529, 1985.
  • D.S. Cronin, Ballistic gelatin characterization and constitutive modeling. In: Dynamic Behavior of Materials, Springer, New York, vol. 1, pp. 51–55, 2011.
  • A. Bracq, G. Haugou, R. Delille, F. Lauro, S. Roth, and O. Mauzac, Experimental study of the strain rate dependence of a synthetic gel for ballistic blunt trauma assessment, J. Mech. Behav. Biomed. Mater., vol. 72, pp. 138–147, 2017. DOI: 10.1016/j.jmbbm.2017.04.027.
  • B. Fontenier, A. Hault-Dubrulle, P. Drazetic, C. Fontaine, and H. Naceur, On the mechanical characterization and modeling of polymer gel brain substitute under dynamic rotational loading, J. Mech. Behav. Biomed. Mater., vol. 63, pp. 44–55, 2016. DOI: 10.1016/j.jmbbm.2016.06.008.
  • J. Shen, L. Taddei, and S. Roth, Numerical modeling of a human tissue surrogate sebs gel under high velocity impacts: investigation of the effect of the strain rate in an elasto-hydrodynamic law, Mech. Adv. Mater. Struct., pp. 1–9, 2020. DOI: 10.1080/15376494.2020.1761490
  • P. Moy, C. Allan Gunnarsson, and T. Weerasooriya, Tensile deformation and fracture of ballistic gelatin as a function of loading rate, In Proceedings of the SEM Annual Conference. Society for Experimental Mechanics Inc. Albuquerque, New Mexico, USA, 2009.
  • L.M. Sturdivan, A mathematical model of penetration of chunky projectiles in a gelatin tissue simulant, Technical report, Chemical Systems Laboratory, Aberdeen Proving Ground, Maryland 21010, 1978.
  • Y. Wen, C. Xu, H. Wang, A. Chen, and R.C. Batra, Impact of steel spheres on ballistic gelatin at moderate velocities, Int. J. Impact Eng., vol. 62, pp. 142–151, 2013. DOI: 10.1016/j.ijimpeng.2013.07.002.
  • L. Taddei, A. Awoukeng Goumtcha, and S. Roth, Smoothed particle hydrodynamics formulation for penetrating impacts on ballistic gelatine, Mech. Res. Commun., vol. 70, pp. 94–101, 2015. DOI: 10.1016/j.mechrescom.2015.09.010.
  • M.A. Khalil, et al., Sph-based method to simulate penetrating impact mechanics into ballistic gelatin: toward an understanding of the perforation of human tissue, Extreme Mech. Lett., vol. 29, pp. 100479, 2019. DOI: 10.1016/j.eml.2019.100479.
  • D. Veysset, et al., High-velocity micro-particle impact on gelatin and synthetic hydrogel, J. Mech. Behav. Biomed. Mater., vol. 86, pp. 71–76, 2018. DOI: 10.1016/j.jmbbm.2018.06.016.
  • D. Veysset, et al., High-strain-rate behavior of a viscoelastic gel under high-velocity microparticle impact, Exp. Mech., vol. 60, no. 9, pp. 1–8, 2020. DOI: 10.1007/s11340-020-00639-9.
  • M. Hassani, D. Veysset, K.A. Nelson, and C.A. Schuh, Material hardness at strain rates beyond 106 s-1 via high velocity microparticle impact indentation, Scr. Mater., vol. 177, pp. 198–202, 2020. DOI: 10.1016/j.scriptamat.2019.10.032.
  • E. Rohani Rad, and M. Farajpour, Dynamics analysis of microparticles in inertial microfluidics for biomedical applications, J. Comput. Appl. Mech., vol. 50, no. 1, pp. 157–164, 2019.
  • A. Farajpour, A. Rastgoo, and M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B., vol. 509, pp. 100–114, 2017. DOI: 10.1016/j.physb.2017.01.006.
  • A. Farajpour, A. Rastgoo, and M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mech. Res. Commun., vol. 57, pp. 18–26, 2014. DOI: 10.1016/j.mechrescom.2014.01.005.
  • H.J. Patel, D.G. Trivedi, A.K. Bhandari, and D.A. Shah, Penetration enhancers for transdermal drug delivery system: a review, J. Pharm. Cosmetol., vol. 1, no. 2, pp. 67–80, 2011.
  • N. Akhtar, Vesicles: a recently developed novel carrier for enhanced topical drug delivery, Curr. Drug Deliv., vol. 11, no. 1, pp. 87–97, 2014. DOI: 10.2174/15672018113106660064.
  • T.L. Burkoth, B.J. Bellhouse, G. Hewson, D.J. Longridge, A.G. Muddle, and D.F. Sarphie, Transdermal and transmucosal powdered drug delivery, Crit. Rev. Ther. Drug Carrier Syst., vol. 16, no. 4, pp. 331–384, 1999.
  • R. Clift, The motion of particles in turbulent gas-streams, Proc. Chemeca’ 70., vol. 1, pp. 14, 1970.
  • S. Meng, L. Taddei, N. Lebaal, D. Veysset, and S. Roth, Modeling micro-particles impacts into ballistic gelatine using smoothed particles hydrodynamics method, Extreme Mech. Lett., vol. 39, pp. 100852, 2020. DOI: 10.1016/j.eml.2020.100852.
  • J. J. Monaghan, On the problem of penetration in particle methods, Comput. Phys. ., vol. 82, no. 1, pp. 1–15, 1989. DOI: 10.1016/0021-9991(89)90032-6.
  • J.P. Gray, J.J. Monaghan and R.P. Swift, Sph elastic dynamics, Comput. Methods Appl. Mech. Eng., vol. 190, no. 49–50, pp. 6641–6662, 2001. DOI: 10.1016/S0045-7825(01)00254-7.
  • Altair HyperMesh Version. 7.0 ser’s manual, 2004. Altair Engineering. Inc., USA.
  • A. Bracq, et al., On the modeling of a visco-hyperelastic polymer gel under blunt ballistic impacts, Int. J. Impact Eng., vol. 118, pp. 78–90, 2018. DOI: 10.1016/j.ijimpeng.2018.04.001.
  • R.W. Ansley and T.N. Smith, Motion of spherical particles in a bingham plastic, AIChE J., vol. 13, no. 6, pp. 1193–1196, 1967. DOI: 10.1002/aic.690130629.
  • S. Meng, et al., Modelling of micro-particles perforations into human tissue surrogate: numerical and analytical aspects, Extreme Mech. Lett., vol. 45, pp. 101299, 2021. DOI: 10.1016/j.eml.2021.101299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.