2,773
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: Performance, challenges, and application

& ORCID Icon
Pages 5077-5107 | Received 14 Dec 2020, Accepted 22 Jun 2021, Published online: 03 Aug 2021

References

  • L.J. Gibson and M.F. Ashby, Cellular Solids: Structure & Properties, Oxford: Pergamon Press, 1999.
  • H. Fan, Y. Tian, L. Yang, D. Hu, and P. Liu, Multistable mechanical metamaterials with highly tunable strength and energy absorption performance, Mech. Adv. Mater. Struct., pp. 1–13, 2020.
  • T.J. Lu, H.A. Stone, and M.F. Ashby, Heat transfer in open-cell metal foams, Acta Mater., vol. 46, no. 10, pp. 3619–3635, 1998. DOI: 10.1016/S1359-6454(98)00031-7.
  • J. Shi, J. Yang, L. Zhu, L. Li, Z. Li, and X. Wang, A porous scaffold design method for bone tissue engineering using triply periodic minimal surfaces, IEEE Access., vol. 6, pp. 1015–1022, 2018. DOI: 10.1109/ACCESS.2017.2777521.
  • A. Herdering, M. Abendroth, P. Gehre, J. Hubálková, and C.G. Aneziris, Additive manufactured polyamide foams with periodic grid as templates for the production of functional coated carbon-bonded alumina foam filters, Ceram. Int., vol. 45, no. 1, pp. 153–159, 2019. DOI: 10.1016/j.ceramint.2018.09.146.
  • H. Bockholt, M. Indrikova, A. Netz, F. Golks, and A. Kwade, The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties, J. Power Sources, vol. 325, pp. 140–151, 2016. DOI: 10.1016/j.jpowsour.2016.05.127.
  • J. Christensen and F.J.G. de Abajo, Anisotropic metamaterials for full control of acoustic waves, Phys. Rev. Lett., vol. 108, no. 12, 2012. DOI: 10.1103/PhysRevLett.108.124301.
  • M.A. De Meller, Produit métallique pour l'obtention d'objets laminés, moulés ou autres, et procédés pour sa fabrication, French Patent, 615(147), 1925.
  • M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N. Wadley, Metal foams: A design guide, Mater. Des., vol. 23, no. 1, pp. 119, 2002. DOI: 10.1016/S0261-3069(01)00049-8.
  • W. Tao and M. C. Leu, Design of lattice structure for additive manufacturing, International Symposium on Flexible Automation (ISFA), IEEE, pp. 325–332, Cleveland, OH, USA, Aug. 2016.
  • I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, and I.A. Ashcroft, Compressive failure modes and energy absorption in additively manufactured double gyroid lattices, Addit. Manuf., vol. 16, pp. 24–29, 2017. DOI: 10.1016/j.addma.2017.04.003.
  • H. Karcher and K. Polthier, Construction of triply periodic minimal surfaces, Philos. Trans. R. Soc. Lond. A, vol. 354, no. 1715, pp. 2077–2104, 1996.
  • L. Zhang, et al., Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf., vol. 23, pp. 505–515, 2018. DOI: 10.1016/j.addma.2018.08.007.
  • M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications, Nat. Mater., vol. 3, no. 7, pp. 444–447, 2004. DOI: 10.1038/nmat1155.
  • M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature, vol. 404, no. 6773, pp. 53–56, 2000. DOI: 10.1038/35003523.
  • S.C. Han, J.W. Lee, and K. Kang, A new type of low density material: Shellular, Adv. Mater., vol. 27, no. 37, pp. 5506–5511, 2015. DOI: 10.1002/adma.201501546.
  • O.A. Shilova, Fractals, morphogenesis and triply periodic minimal surfaces in sol–gel-derived thin films, J. Sol-Gel Sci. Technol., vol. 95, no. 3, pp. 599–608, 2020. DOI: 10.1007/s10971-020-05279-y.
  • M. Stefik, S. Guldin, S. Vignolini, U. Wiesner, and U. Steiner, Block copolymer self-assembly for nanophotonics, Chem. Soc. Rev., vol. 44, no. 15, pp. 5076–5091, 2015. DOI: 10.1039/c4cs00517a.
  • A. Zadpoor, Design for additive bio-manufacturing: From patient-specific medical devices to rationally designed meta-biomaterials, IJMS, vol. 18, no. 8, pp. 1607, 2017. DOI: 10.3390/ijms18081607.
  • M.J. Mirzaali, R. Hedayati, P. Vena, L. Vergani, M. Strano, and A.A. Zadpoor, Rational design of soft mechanical metamaterials: Independent tailoring of elastic properties with randomness, Appl. Phys. Lett., vol. 111, no. 5, pp. 051903, 2017. DOI: 10.1063/1.4989441.
  • M.K. Thompson et al., Design for additive manufacturing: Trends, opportunities, considerations, and constraints, CIRP Ann., vol. 65, no. 2, pp. 737–760, 2016. DOI: 10.1016/j.cirp.2016.05.004.
  • A.A. Zadpoor, Meta-biomaterials, Biomater. Sci., vol. 8, no. 1, pp. 18–38, 2019. DOI: 10.1039/c9bm01247h.
  • R. Hedayati, A.M. Leeflang, and A.A. Zadpoor, Additively manufactured metallic pentamode meta-materials, Appl. Phys. Lett., vol. 110, no. 9, pp. 091905, 2017. DOI: 10.1063/1.4977561.
  • S.M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, Current trends in the design of scaffolds for computer-aided tissue engineering, Acta Biomater., vol. 10, no. 2, pp. 580–594, 2014. DOI: 10.1016/j.actbio.2013.10.024.
  • L. Han and S. Che, An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems, Adv. Mater., vol. 30, no. 17, pp. 1705708, 2018. DOI: 10.1002/adma.201705708.
  • H.A. Schwarz, Ueber ein Modell eines Minimalflächenstückes, welches längs seiner Begrenzung vier gegebene Ebenen rechtwinklig trifft. In: Gesammelte Mathematische Abhandlungen, Springer, Berlin, Heidelberg, pp. 149–150, 1890.
  • E.R. Neovius, Bestimmung Zweier Spezieller Periodischer Minimalflächen, Akad. Abhandlungen, Helsinki, Finland, 1883.
  • A. H. Schoen, Infinite periodic minimal surfaces without self-intersections, NASA Technical Note No. D-5541, NASA, 1970.
  • E.A. Lord and A.L. Mackay, Periodic minimal surfaces of cubic symmetry, Curr. Sci., vol. 85, no. 3, pp. 346–362, 2003.
  • S. Andersson, S.T. Hyde, K. Larsson, and S. Lidin, Minimal surfaces and structures: From inorganic and metal crystals to cell membranes and biopolymers, Chem. Rev., vol. 88, no. 1, pp. 221–242, 1988. DOI: 10.1021/cr00083a011.
  • H.-U. Nissen, Crystal orientation and plate structure in echinoid skeletal units, Science, vol. 166, no. 3909, pp. 1150–1152, 1969. DOI: 10.1126/science.166.3909.1150.
  • R.W. Corkery and E.C. Tyrode, On the colour of wing scales in butterflies: Iridescence and preferred orientation of single gyroid photonic crystals, Interface Focus, vol. 7, no. 4, pp. 20160154, 2017. DOI: 10.1098/rsfs.2016.0154.
  • J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E, vol. 77, no. 5, p. 050904, 2008.
  • S. Torquato and A. Donev, Minimal surfaces and multifunctionality, Proc. R Soc. Lond. A, vol. 460, no. 2047, pp. 1849–1856, 2004. DOI: 10.1098/rspa.2003.1269.
  • I. Maskery, et al., Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing, Polymer, vol. 152, pp. 62–71, 2018. DOI: 10.1016/j.polymer.2017.11.049.
  • O. Al-Ketan, R.K. Abu Al-Rub, and R. Rowshan, The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface, J. Mater. Res., vol. 33, no. 3, pp. 343–359, 2018. DOI: 10.1557/jmr.2018.1.
  • C.K. Ullal, M. Maldovan, M. Wohlgemuth, E.L. Thomas, C.A. White, and S. Yang, Triply periodic bicontinuous structures through interference lithography: A level-set approach, J. Opt. Soc. Am. A, vol. 20, no. 5, pp. 948, 2003. DOI: 10.1364/JOSAA.20.000948.
  • X.Y. Zhang, X.-C. Yan, G. Fang, and M. Liu, Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface, Addit. Manuf., vol. 32, pp. 101015, 2020.
  • M. Afshar, A.P. Anaraki, and H. Montazerian, Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces, Mater. Sci. Eng.: C, vol. 92, pp. 254–267, 2018. DOI: 10.1016/j.msec.2018.06.051.
  • N. Yang, Y. Tian, and D. Zhang, Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering, Med. Eng. Phys., vol. 37, no. 11, pp. 1037–1046, 2015. DOI: 10.1016/j.medengphy.2015.08.006.
  • O. Al-Ketan, M. Adel Assad, and R.K. Abu Al-Rub, Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures, Comps. Struct., vol. 176, pp. 9–19, 2017. DOI: 10.1016/j.compstruct.2017.05.026.
  • J. Kadkhodapour, H. Montazerian, and S. Raeisi, Investigating internal architecture effect in plastic deformation and failure for TPMS-based scaffolds using simulation methods and experimental procedure, Mater. Sci. Eng.: C, vol. 43, pp. 587–597, 2014. DOI: 10.1016/j.msec.2014.07.047.
  • D. Li, W. Liao, N. Dai, G. Dong, Y. Tang, and Y.M. Xie, Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing, Comput. Aided Des., vol. 104, pp. 87–99, 2018. DOI: 10.1016/j.cad.2018.06.003.
  • E.C.N. Silva, M.C. Walters, and G.H. Paulino, Modeling bamboo as a functionally graded material: Lessons for the analysis of affordable materials, J. Mater. Sci., vol. 41, no. 21, pp. 6991–7004, 2006. DOI: 10.1007/s10853-006-0232-3.
  • A. Mortensen and S. Suresh, Functionally graded metals and metal-ceramic composites: Part 1 Processing, Int. Mater. Rev., vol. 40, no. 6, pp. 239–265, 1995. DOI: 10.1179/imr.1995.40.6.239.
  • S.Y. Choy, C.-N. Sun, K.F. Leong, and J. Wei, Compressive properties of functionally graded lattice structures manufactured by selective laser melting, Mater. Des., vol. 131, pp. 112–120, 2017. DOI: 10.1016/j.matdes.2017.06.006.
  • L. Yang, et al., An investigation into the effect of gradients on the manufacturing fidelity of triply periodic minimal surface structures with graded density fabricated by selective laser melting, J. Mater. Process. Tech., vol. 275, pp. 116367, 2020. DOI: 10.1016/j.jmatprotec.2019.116367.
  • O. Al-Ketan, D.-W. Lee, R. Rowshan, and R.K. Abu Al-Rub, Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties, J. Mech. Behav. Biomed., vol. 102, pp. 103520, 2020. DOI: 10.1016/j.jmbbm.2019.103520.
  • M. Zhao, D.Z. Zhang, F. Liu, Z. Li, Z. Ma, and Z. Ren, Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces, Int. J. Mech. Sci., vol. 167, pp. 105262, 2020. DOI: 10.1016/j.ijmecsci.2019.105262.
  • F. Liu, Z. Mao, P. Zhang, D.Z. Zhang, J. Jiang, and Z. Ma, Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties, Mater. Des., vol. 160, pp. 849–860, 2018. DOI: 10.1016/j.matdes.2018.09.053.
  • O. Al-Ketan and R.K. Abu Al-Rub, Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices, Adv. Eng. Mater., vol. 21, no. 10, pp. 1900524, 2019. DOI: 10.1002/adem.201900524.
  • F.W. Zok, R.M. Latture, and M.R. Begley, Periodic truss structures, J. Mech. Phys. Solids, vol. 96, pp. 184–203, 2016. DOI: 10.1016/j.jmps.2016.07.007.
  • D. Yoo, Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions, Med. Eng. Phys., vol. 34, no. 5, pp. 625–639, 2012. DOI: 10.1016/j.medengphy.2012.03.009.
  • D.J. Yoo and K.-H. Kim, An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function, Int. J. Precis. Eng. Manuf., vol. 16, no. 9, pp. 2021–2032, 2015. DOI: 10.1007/s12541-015-0263-2.
  • I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck, and I.A. Ashcroft, Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading, Mater. Des., vol. 155, pp. 220–232, 2018. DOI: 10.1016/j.matdes.2018.05.058.
  • N. Yang, Z. Quan, D. Zhang, and Y. Tian, Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering, Comput. Aided Des., vol. 56, pp. 11–21, 2014. DOI: 10.1016/j.cad.2014.06.006.
  • J. Plocher and A. Panesar, Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures, Addit. Manuf., vol. 33, pp. 101171, 2020.
  • S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, and C. Yan, Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction, Mater. Des., vol. 114, pp. 633–641, 2017. DOI: 10.1016/j.matdes.2016.11.090.
  • G. Savio, R. Meneghello, and G. Concheri, Design of variable thickness triply periodic surfaces for additive manufacturing, Prog. Addit. Manuf., vol. 4, no. 3, pp. 281–290, 2019. DOI: 10.1007/s40964-019-00073-x.
  • S. Yu, J. Sun, and J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater Des., vol. 182, pp. 108021, 2019. DOI: 10.1016/j.matdes.2019.108021.
  • A. Suresh Babu, K.M. Binish, M. Jaivignesh, and M. Sugavaneswaran, Modelling of functional gradient porous structure and its fabrication using additive manufacturing process, Mater. Today-Proc., vol. 5, no. 11, pp. 24558–24567, 2018. DOI: 10.1016/j.matpr.2018.10.253.
  • J. Maszybrocka, B. Gapiński, M. Dworak, G. Skrabalak, and A. Stwora, “Modelling, manufacturability and compression properties of the CpTi grade 2 cellular lattice with radial gradient TPMS architecture,”B. Pol. Acad. Sci.-Tech., vol. 67, no. 4, pp. 719–727, 2019.
  • D.-J. Yoo, Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces, Int. J. Precis. Eng. Manuf., vol. 13, no. 4, pp. 527–537, 2012. DOI: 10.1007/s12541-012-0068-5.
  • D. Li, N. Dai, Y. Tang, G. Dong, and Y.F. Zhao, Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes, J. Mech. Des., vol. 141, no. 7, 2019.
  • C. Peng and P. Tran, Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings, Compos. Part B - Eng., vol. 188, pp. 107773, 2020. DOI: 10.1016/j.compositesb.2020.107773.
  • S. Ma, K. Song, J. Lan, and L. Ma, Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS, J. Mech. Behav. Biomed., vol. 107, pp. 103727, 2020. DOI: 10.1016/j.jmbbm.2020.103727.
  • R. Dai, D. Li, and Y. Tang, „Mechanical Properties of Gradient Copper Nano-Gyroid Cellular Structures: A Molecular Dynamics Study,” SSRN Electronic Journal, 2020, arxiv.org/abs/2104.03243v1.
  • N. Yang, C. Du, S. Wang, Y. Yang, and C. Zhang, Mathematically defined gradient porous materials, Mater. Lett., vol. 173, pp. 136–140, 2016. DOI: 10.1016/j.matlet.2016.03.021.
  • M. Zhianmanesh, M. Varmazyar, and H. Montazerian, Fluid permeability of graded porosity scaffolds architectured with minimal surfaces, ACS Biomater. Sci. Eng., vol. 5, no. 3, pp. 1228–1237, 2019. DOI: 10.1021/acsbiomaterials.8b01400.
  • O. Sigmund and K. Maute, Topology optimization approaches, Struct. Multidisc. Optim., vol. 48, no. 6, pp. 1031–1055, 2013. DOI: 10.1007/s00158-013-0978-6.
  • M. Zhang, Y. Yang, W. Qin, S. Wu, J. Chen, and C. Song, Optimizing the pinch-off problem for gradient triply periodic minimal surface cellular structures manufactured by selective laser melting, RPJ, vol. 26, no. 10, pp. 1771–1781, 2020. DOI: 10.1108/RPJ-11-2019-0298.
  • M.P. Bendsøe and O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech., vol. 69, no. 9–10, pp. 635–654, 1999. DOI: 10.1007/s004190050248.
  • N. Strömberg, Optimal grading of TPMS-based lattice structures with transversely isotropic elastic bulk properties, Eng. Optimiz., pp. 1–13, 2020. DOI: 10.1080/0305215X.2020.1837790.
  • Y. M. Xie and G. P. Steven, “Basic Evolutionary Structural Optimization,” Evolutionary Structural Optimization, pp. 12–29, Springer, London, 1997.
  • O.M. Querin, G.P. Steven, and Y.M. Xie, Evolutionary structural optimisation using an additive algorithm, Finite Elem. Anal. Des., vol. 34, no. 3–4, pp. 291–308, 2000. DOI: 10.1016/S0168-874X(99)00044-X.
  • O.M. Querin, G.P. Steven, and Y.M. Xie, Evolutionary structural optimisation (ESO) using a bidirectional algorithm, Eng. Comput., vol. 15, no. 8, pp. 1031–1048, 1998. DOI: 10.1108/02644409810244129.
  • S. Osher and J. Sethian, Fronts propagating with curvature dependent speed-algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988. DOI: 10.1016/0021-9991(88)90002-2.
  • L. Zhang, et al., Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: Design, manufacturing and characterization, J. Manuf. Process., vol. 56, pp. 1166–1177, 2020. DOI: 10.1016/j.jmapro.2020.06.005.
  • C.-T. Chen, D. C. Chrzan, and G. X. Gu, “Nano-topology optimization for materials design with atom-by-atom control,” Nat. Commun., vol. 11, no. 1, p. 3745, 2020.
  • A. Panesar, M. Abdi, D. Hickman, and I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing, Addit. Manuf., vol. 19, pp. 81–94, 2018. DOI: 10.1016/j.addma.2017.11.008.
  • Materialise 3-Matic, Materialise N.V., Leuven, Belgium, 2016.
  • Altair HyperWorks OptiStruct, Altair Engineering, Inc., Troy, Michigan, USA, 2016.
  • Rhinoceros 3D, McNeel, Barcelona, Spain, 2015.
  • Simpleware ScanIP, Synopsys, Mountain View, California, USA, 2016.
  • Autodesk Within, Autodesk, Inc, San Rafael, CA, USA, 2016.
  • X. Zheng, et al., Ultralight, ultrastiff mechanical metamaterials, Science, vol. 344, no. 6190, pp. 1373–1377, 2014. DOI: 10.1126/science.1252291.
  • A.A. Zadpoor, Mechanical performance of additively manufactured meta-biomaterials, Acta Biomater., vol. 85, pp. 41–59, 2019. DOI: 10.1016/j.actbio.2018.12.038.
  • F.S.L. Bobbert, et al., Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomater., vol. 53, pp. 572–584, 2017. DOI: 10.1016/j.actbio.2017.02.024.
  • Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, vol. 11, no. 2, pp. 127–140, 1963. DOI: 10.1016/0022-5096(63)90060-7.
  • J.B. Berger, H.N.G. Wadley, and R.M. McMeeking, Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness, Nature, vol. 543, no. 7646, pp. 533–537, 2017. DOI: 10.1038/nature21075.
  • H.E. Burton, et al., The design of additively manufactured lattices to increase the functionality of medical implants, Mater. Sci. Eng. C Mater. Biol. Appl., vol. 94, pp. 901–908, 2019. DOI: 10.1016/j.msec.2018.10.052.
  • M. Ashby, The properties of foams and lattices, Philos. Trans. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 15–30, 2006. DOI: 10.1098/rsta.2005.1678.
  • R. Miralbes, D. Ranz, F.J. Pascual, D. Zouzias, and M. Maza, Characterization of additively manufactured triply periodic minimal surface structures under compressive loading, Mech. Adv. Mater. Struct., pp. 1–15, 2020.
  • R. Hedayati, et al., Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials, J. Mech. Behav. Biomed., vol. 79, pp. 254–263, 2018. DOI: 10.1016/j.jmbbm.2017.12.029.
  • A.A. Zadpoor, J. Sinke, and R. Benedictus, Experimental and numerical study of machined aluminum tailor-made blanks, J. Mater. Process. Tech., vol. 200, no. 1-3, pp. 288–299, 2008. no DOI: 10.1016/j.jmatprotec.2007.09.049.
  • K. Genovese, S. Leeflang, and A.A. Zadpoor, Microscopic full-field three-dimensional strain measurement during the mechanical testing of additively manufactured porous biomaterials, J. Mech. Behav. Biomed., vol. 69, pp. 327–341, 2017. DOI: 10.1016/j.jmbbm.2017.01.010.
  • S.Z. Khan, S.H. Masood, E. Ibrahim, and Z. Ahmad, Compressive behaviour of neovius triply periodic minimal surface cellular structure manufactured by fused deposition modelling, Virtual Phys. Prototyp., vol. 14, no. 4, pp. 360–370, 2019. DOI: 10.1080/17452759.2019.1615750.
  • M.G. Rashed, M. Ashraf, R.A.W. Mines, and P.J. Hazell, Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications, Mater. Des., vol. 95, pp. 518–533, 2016. DOI: 10.1016/j.matdes.2016.01.146.
  • M. Keshavarzan, M. Kadkhodaei, M. Badrossamay, and M.R. Karamooz Ravari, Investigation on the failure mechanism of triply periodic minimal surface cellular structures fabricated by Vat photopolymerization additive manufacturing under compressive loadings, Mech. Mater., vol. 140, pp. 103150, 2020. DOI: 10.1016/j.mechmat.2019.103150.
  • M. Afshar, A.P. Anaraki, H. Montazerian, and J. Kadkhodapour, Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures, J. Mech. Behav. Biomed. Mater., vol. 62, pp. 481–494, 2016. DOI: 10.1016/j.jmbbm.2016.05.027.
  • Z. Wang, X. Wang, T. Gao, and C. Shi, Mechanical behavior and deformation mechanism of triply periodic minimal surface sheet under compressive loading, Mech. Adv. Mater. Struct., pp. 1–13, 2020. DOI: 10.1080/15376494.2020.1829756.
  • C.N. Kelly, et al., Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering, Acta Biomater., vol. 94, pp. 610–626, 2019. DOI: 10.1016/j.actbio.2019.05.046.
  • A. Nasirov and I. Fidan, Prediction of mechanical properties of fused filament fabricated structures via asymptotic homogenization, Mech. Mater., vol. 145, pp. 103372, 2020. DOI: 10.1016/j.mechmat.2020.103372.
  • Y. Sun and Q.M. Li, Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling, Int. J. Impact Eng., vol. 112, pp. 74–115, 2018. DOI: 10.1016/j.ijimpeng.2017.10.006.
  • H. Yin, Z. Liu, J. Dai, G. Wen, and C. Zhang, Crushing behavior and optimization of sheet-based 3D periodic cellular structures, Compos. Part B: Eng., vol. 182, pp. 107565, 2020. DOI: 10.1016/j.compositesb.2019.107565.
  • P. Tran and C. Peng, Triply periodic minimal surfaces sandwich structures subjected to shock impact, J. Sandw. Struct. Mater., pp. 109963622090555, 2020. DOI: 10.1177/1099636220905551.
  • H. Gong, J. Liu, K. Xu, J. Wu, and Y. Li, Surface-topology-controlled mechanical characteristics of triply periodic carbon Schwarzite foams, Soft Matter., vol. 16, no. 17, pp. 4324–4338, 2020. DOI: 10.1039/D0SM00136H.
  • A. Zargarian, M. Esfahanian, J. Kadkhodapour, S. Ziaei-Rad, and D. Zamani, On the fatigue behavior of additive manufactured lattice structures, Theor. Appl. Fract. Mech., vol. 100, pp. 225–232, 2019. DOI: 10.1016/j.tafmec.2019.01.012.
  • L. Yang, et al., Compression–compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting, Acta Mater., vol. 181, pp. 49–66, 2019. DOI: 10.1016/j.actamat.2019.09.042.
  • K. Lietaert, A. Cutolo, D. Boey, and B. Van Hooreweder, “Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load,” Sci. Rep., vol. 8, no. 1, p. 4957, 2018.
  • A. Cutolo, B. Neirinck, K. Lietaert, C. de Formanoir, and B. Van Hooreweder, Influence of layer thickness and post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion, Addit. Manuf., vol. 23, pp. 498–504, 2018. DOI: 10.1016/j.addma.2018.07.008.
  • H. Ueno, K. Kakihata, Y. Kaneko, S. Hashimoto, and A. Vinogradov, Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel, Acta Mater., vol. 59, no. 18, pp. 7060–7069, 2011. DOI: 10.1016/j.actamat.2011.07.061.
  • S.J. Li, et al., Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting, Acta Mater., vol. 60, no. 3, pp. 793–802, 2012. DOI: 10.1016/j.actamat.2011.10.051.
  • S.J. Li, et al., Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method, Acta Biomater., vol. 10, no. 10, pp. 4537–4547, 2014. DOI: 10.1016/j.actbio.2014.06.010.
  • H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, and B. Stucker, Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting, Mater. Des., vol. 86, pp. 545–554, 2015. DOI: 10.1016/j.matdes.2015.07.147.
  • M. Grasso and B.M. Colosimo, Process defects and in situ monitoring methods in metal powder bed fusion: A review, Meas. Sci. Technol., vol. 28, no. 4, pp. 044005, 2017. DOI: 10.1088/1361-6501/aa5c4f.
  • W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, The metallurgy and processing science of metal additive manufacturing, Int. Mater. Rev., vol. 61, no. 5, pp. 315–360, 2016. DOI: 10.1080/09506608.2015.1116649.
  • B. Zhang, Y. Li, and Q. Bai, Defect formation mechanisms in selective laser melting: A review, Chin. J. Mech. Eng., vol. 30, no. 3, pp. 515–527, 2017. DOI: 10.1007/s10033-017-0121-5.
  • B. Dutton, W. Vesga, J. Waller, S. James, and M. Seifi, Metal Additive Manufacturing Defect Formation and Nondestructive Evaluation Detectability. Structural Integrity of Additive Manufactured Parts, ASTM International, pp. 1–50, 2020.
  • T.J. Coogan and D.O. Kazmer, Bond and part strength in fused deposition modeling, RPJ, vol. 23, no. 2, pp. 414–422, 2017. DOI: 10.1108/RPJ-03-2016-0050.
  • P. Mercelis and J. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyping J., vol. 12, no. 5, pp. 254–265, 2006. DOI: 10.1108/13552540610707013.
  • S. Sun, M. Brandt, and M. Easton, “Powder bed fusion processes: An overview,” In Laser Additive Manufacturing, Woodhead Publishing, pp. 55–77, UK, 2017.
  • S. Amin Yavari, et al., Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials, J. Mech. Behav. Biomed. Mater., vol. 43, pp. 91–100, 2015. DOI: 10.1016/j.jmbbm.2014.12.015.
  • J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit, Porosity measurements and analysis for metal additive manufacturing process control, J. Res. Natl. Inst. Stan., vol. 119, pp. 494, 2014.
  • S. Carmignato, W. Dewulf, and R. Leach, Eds., “Industrial X-Ray Computed Tomography,” In Precision Metal Additive Manufacturing, CRC Press, pp. 313–344, USA, 2018.
  • M. McMillan, M. Leary, and M. Brandt, Computationally efficient finite difference method for metal additive manufacturing: A reduced-order DFAM tool applied to SLM, Mater. Des., vol. 132, pp. 226–243, 2017. DOI: 10.1016/j.matdes.2017.06.058.
  • I. Echeta, X. Feng, B. Dutton, R. Leach, and S. Piano, Review of defects in lattice structures manufactured by powder bed fusion, Int. J. Adv. Manuf. Technol., vol. 106, no. 5-6, pp. 2649–2668, 2020. DOI: 10.1007/s00170-019-04753-4.
  • O. Al-Ketan, R. Rowshan, and R.K. Abu Al-Rub, Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Addit. Manuf., vol. 19, pp. 167–183, 2018. DOI: 10.1016/j.addma.2017.12.006.
  • C. Yan, L. Hao, A. Hussein, and D. Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, Int. J. Mach. Tool. Manuf., vol. 62, pp. 32–38, 2012. DOI: 10.1016/j.ijmachtools.2012.06.002.
  • E. Yang, et al., Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study, Mater. Des., vol. 184, pp. 108165, 2019. DOI: 10.1016/j.matdes.2019.108165.
  • S.L. Sing, F.E. Wiria, and W.Y. Yeong, Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior, Robot. Com.-Int. Manuf., vol. 49, pp. 170–180, 2018. DOI: 10.1016/j.rcim.2017.06.006.
  • C. Qiu, et al., Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting, Mat. Sci. Eng. A-Struct., vol. 628, pp. 188–197, 2015. DOI: 10.1016/j.msea.2015.01.031.
  • Y. Shen, W. Cantwell, R. Mines, and Y. Li, Low-velocity impact performance of lattice structure core based sandwich panels, J. Compos. Mater., vol. 48, no. 25, pp. 3153–3167, 2014. DOI: 10.1177/0021998313507616.
  • R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process, Int. J. Adv. Manuf. Technol., vol. 59, no. 9-12, pp. 1025–1035, 2012. DOI: 10.1007/s00170-011-3566-1.
  • P.H. Warnke, et al., Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering, Tissue Eng. Part C Methods, vol. 15, no. 2, pp. 115–124, 2009. DOI: 10.1089/ten.tec.2008.0288.
  • O. Al-Ketan, R. Rowshan, A. N. Palazotto, and R. K. Abu Al-Rub, “On Mechanical Properties of Cellular Steel Solids With Shell-Like Periodic Architectures Fabricated by Selective Laser Sintering,” J. Eng. Mater., vol. 141, no. 2, p. 021009, 2019.
  • E. Hernández-Nava, et al., The effect of defects on the mechanical response of Ti-6Al-4V cubic lattice structures fabricated by electron beam melting, Acta Mater., vol. 108, pp. 279–292, 2016. DOI: 10.1016/j.actamat.2016.02.029.
  • R. Wauthle, et al., Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures, Addit. Manuf., vol. 5, pp. 77–84, 2015. DOI: 10.1016/j.addma.2014.12.008.
  • C. Yan, L. Hao, A. Hussein, and P. Young, Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting, J. Mech. Behav. Biomed., vol. 51, pp. 61–73, 2015. DOI: 10.1016/j.jmbbm.2015.06.024.
  • G.S. Was and R.M. Pelloux, The effect of shot peening on the fatigue behavior of alloy 7075-T6, MTA, vol. 10, no. 5, pp. 656–658, 1979. DOI: 10.1007/BF02658332.
  • H. Soyama, Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening, water jet peening, shot peening and laser peening, J. Mater. Process. Tech., vol. 269, pp. 65–78, 2019. DOI: 10.1016/j.jmatprotec.2019.01.030.
  • P.S. Prevéy and J.T. Cammett, The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6, Int. J. Fatigue, vol. 26, no. 9, pp. 975–982, 2004. DOI: 10.1016/j.ijfatigue.2004.01.010.
  • N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt, The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment, Mater. Sci. Eng.: A, vol. 667, pp. 139–146, 2016. DOI: 10.1016/j.msea.2016.04.092.
  • A. Alkhudhiri, N. Darwish, and N. Hilal, Membrane distillation: A comprehensive review, Desalination, vol. 287, pp. 2–18, 2012. DOI: 10.1016/j.desal.2011.08.027.
  • N. Thomas, M.O. Mavukkandy, S. Loutatidou, and H.A. Arafat, Membrane distillation research & implementation: Lessons from the past five decades, Sep. Purif. Technol., vol. 189, pp. 108–127, 2017. DOI: 10.1016/j.seppur.2017.07.069.
  • A. Hagedorn, G. Fieg, D. Winter, J. Koschikowski, A. Grabowski, and T. Mann, Membrane and spacer evaluation with respect to future module design in membrane distillation, Desalination, vol. 413, pp. 154–167, 2017. DOI: 10.1016/j.desal.2017.03.016.
  • F. Li, W. Meindersma, A.B. de Haan, and T. Reith, Novel spacers for mass transfer enhancement in membrane separations, J. Membr. Sci., vol. 253, no. 1-2, pp. 1–12, 2005. no DOI: 10.1016/j.memsci.2004.12.019.
  • A. Shrivastava, S. Kumar, and E.L. Cussler, Predicting the effect of membrane spacers on mass transfer, J. Membr. Sci., vol. 323, no. 2, pp. 247–256, 2008. DOI: 10.1016/j.memsci.2008.05.060.
  • C. Fritzmann, M. Hausmann, M. Wiese, M. Wessling, and T. Melin, Microstructured spacers for submerged membrane filtration systems, J. Membr. Sci., vol. 446, pp. 189–200, 2013. DOI: 10.1016/j.memsci.2013.06.033.
  • A.S. Dalaq, D.W. Abueidda, R.K. Abu Al-Rub, and I.M. Jasiuk, Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements, Int. J. Solids Struct., vol. 83, pp. 169–182, 2016. DOI: 10.1016/j.ijsolstr.2016.01.011.
  • N. Thomas, N. Sreedhar, O. Al-Ketan, R. Rowshan, R.K. Abu Al-Rub, and H. Arafat, 3D printed spacers based on TPMS architectures for scaling control in membrane distillation, J. Membr. Sci., vol. 581, pp. 38–49, 2019. DOI: 10.1016/j.memsci.2019.03.039.
  • N. Sreedhar, et al., 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF, Desalination, vol. 425, pp. 12–21, 2018. DOI: 10.1016/j.desal.2017.10.010.
  • N. Thomas, N. Sreedhar, O. Al-Ketan, R. Rowshan, R.K. Abu Al-Rub, and H. Arafat, 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation, Desalination, vol. 443, pp. 256–271, 2018. DOI: 10.1016/j.desal.2018.06.009.
  • N. Sreedhar, et al., Mass transfer analysis of ultrafiltration using spacers based on triply periodic minimal surfaces: Effects of spacer design, directionality and voidage, J. Membr. Sci., vol. 561, pp. 89–98, 2018. DOI: 10.1016/j.memsci.2018.05.028.
  • L.D. Wegner and L.J. Gibson, The mechanical behaviour of interpenetrating phase composites – I: Modelling, Int. J. Mech. Sci., vol. 42, no. 5, pp. 925–942, 2000. DOI: 10.1016/S0020-7403(99)00025-9.
  • O. Al-Ketan, R.K.A. Al-Rub, and R. Rowshan, Mechanical properties of a new type of architected interpenetrating phase composite materials, Adv. Mater. Technol., vol. 2, no. 2, pp. 1600235, 2017. DOI: 10.1002/admt.201600235.
  • L. Ai and X.-L. Gao, Evaluation of effective elastic properties of 3D printable interpenetrating phase composites using the meshfree radial point interpolation method, Mech. Adv. Mater. Struct., vol. 25, no. 15-16, pp. 1241–1251, 2018. DOI: 10.1080/15376494.2016.1143990.
  • X.-Q. Feng, Y.-W. Mai, and Q.-H. Qin, A micromechanical model for interpenetrating multiphase composites, Comp. Mater. Sci., vol. 28, no. 3-4, pp. 486–493, 2003. DOI: 10.1016/j.commatsci.2003.06.005.
  • Z. Poniznik, V. Salit, M. Basista, and D. Gross, Effective elastic properties of interpenetrating phase composites, Comp. Mater. Sci., vol. 44, no. 2, pp. 813–820, 2008. DOI: 10.1016/j.commatsci.2008.06.010.
  • C. San Marchi, M. Kouzeli, R. Rao, J.A. Lewis, and D.C. Dunand, Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture, Scripta Mater., vol. 49, no. 9, pp. 861–866, 2003. DOI: 10.1016/S1359-6462(03)00441-X.
  • D.W. Abueidda, A.S. Dalaq, R.K. Abu Al-Rub, and I. Jasiuk, Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites, Comps. Struct., vol. 133, pp. 85–97, 2015. DOI: 10.1016/j.compstruct.2015.06.082.
  • S. Li, D. Xiong, M. Liu, S. Bai, and X. Zhao, Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure, Ceram. Int., vol. 40, no. 5, pp. 7539–7544, 2014. DOI: 10.1016/j.ceramint.2013.12.105.
  • J.-S. Kim, Y.-S. Kwon, O.I. Lomovsky, M.A. Korchagin, V.I. Mali, and D.V. Dudina, A synthetic route for metal–ceramic interpenetrating phase composites, Mater. Lett., vol. 60, no. 29-30, pp. 3723–3726, 2006. DOI: 10.1016/j.matlet.2006.03.096.
  • D.-J. Yoo, New paradigms in cellular material design and fabrication, Int. J. Precis. Eng. Manuf., vol. 16, no. 12, pp. 2577–2589, 2015. DOI: 10.1007/s12541-015-0330-8.
  • L. Wang, J. Lau, E.L. Thomas, and M.C. Boyce, Co-continuous composite materials for stiffness, strength, and energy dissipation, Adv. Mater., vol. 23, no. 13, pp. 1524–1529, 2011. DOI: 10.1002/adma.201003956.
  • R. K. Abu Al-Rub, D. W. Abueidda, and A. S. Dalaq, “Thermo-Electro-Mechanical Properties of Interpenetrating Phase Composites with Periodic Architectured Reinforcements,” From Creep Damage Mechanics to Homogenization Methods, pp. 1–18, Springer, Cham, 2015.
  • X. Song, L. He, W. Yang, Z. Wang, Z. Chen, J. Guo, H. Wang, and L. Chen, “Additive Manufacturing of Bi-Continuous Piezocomposites With Triply Periodic Phase Interfaces for Combined Flexibility and Piezoelectricity,” J. Man. Sci. Eng., vol. 141, no. 11, p. 111004, 2019.
  • C.R. Bowen, H.A. Kim, P.M. Weaver, and S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energ. Environ. Sci., vol. 7, no. 1, pp. 25–44, 2014. DOI: 10.1039/C3EE42454E.
  • J. Feng, J. Fu, C. Shang, Z. Lin, and B. Li, Sandwich panel design and performance optimization based on triply periodic minimal surfaces, Comput. Aided Des., vol. 115, pp. 307–322, 2019. DOI: 10.1016/j.cad.2019.06.007.
  • M. Helou and S. Kara, Design, analysis and manufacturing of lattice structures: An overview, Int. J. Comp. Integ. M., vol. 31, no. 3, pp. 243–261, 2018. DOI: 10.1080/0951192X.2017.1407456.
  • S. Park and D.W. Rosen, Quantifying effects of material extrusion additive manufacturing process on mechanical properties of lattice structures using as-fabricated voxel modeling, Addit. Manuf., vol. 12, pp. 265–273, 2016. DOI: 10.1016/j.addma.2016.05.006.
  • I. Hussain, et al., Design and prototyping soft–rigid tendon-driven modular grippers using interpenetrating phase composites materials, Int. J. Rob. Res., vol. 39, no. 14, pp. 1635–1646, 2020. DOI: 10.1177/0278364920907697.
  • H. Wu, D. Pritchet, S. Wolff, J. Cao, K. Ehmann, and P. Zou, A vibration-assisted powder delivery system for additive manufacturing-an experimental investigation, Addit. Manuf., vol. 34, pp. 101170, 2020.
  • ISO, ISO 13314, 2011 ISO, ISO 13314, “Mechanical Testing of metals - Ductility Testing - Compression Test for Porous and Cellular metals,” ISO/TC 164/SC 2, 13314, 2011.
  • H.H. Cho, Y. Cho, and H.N. Han, Finite element analysis for mechanical response of Ti foams with regular structure obtained by selective laser melting, Acta Mater., vol. 97, pp. 199–206, 2015. DOI: 10.1016/j.actamat.2015.07.003.
  • S. Youssef, E. Maire, and R. Gaertner, Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Mater., vol. 53, no. 3, pp. 719–730, 2005. DOI: 10.1016/j.actamat.2004.10.024.
  • G. Campoli, M.S. Borleffs, S. Amin Yavari, R. Wauthle, H. Weinans, and A.A. Zadpoor, Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing, Mater. Des., vol. 49, pp. 957–965, 2013. DOI: 10.1016/j.matdes.2013.01.071.
  • J. Shi, L. Zhu, L. Li, Z. Li, J. Yang, and X. Wang, A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering, Sci. Rep., vol. 8, no. 1, pp. 1–10, 2018.
  • S. Vijayavenkataraman, L. Zhang, S. Zhang, J.Y. Hsi Fuh, and W.F. Lu, Triply periodic minimal surfaces sheet scaffolds for tissue engineering applications: An optimization approach toward biomimetic scaffold design, ACS Appl. Bio Mater., vol. 1, no. 2, pp. 259–269, 2018. DOI: 10.1021/acsabm.8b00052.
  • C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des., vol. 55, pp. 533–541, 2014. DOI: 10.1016/j.matdes.2013.10.027.
  • A. Ataee, Y. Li, M. Brandt, and C. Wen, Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications, Acta Mater., vol. 158, pp. 354–368, 2018. vol DOI: 10.1016/j.actamat.2018.08.005.
  • Z. Ma, D.Z. Zhang, F. Liu, J. Jiang, M. Zhao, and T. Zhang, Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: Microstructures, mechanical properties and energy absorption, Mater. Des., vol. 187, pp. 108406, 2020. DOI: 10.1016/j.matdes.2019.108406.
  • E. Alabort, D. Barba, and R.C. Reed, Design of metallic bone by additive manufacturing, Scripta Mater., vol. 164, pp. 110–114, 2019. DOI: 10.1016/j.scriptamat.2019.01.022.
  • A.M. Abou-Ali, O. Al-Ketan, R. Rowshan, and R.A. Al-Rub, Mechanical response of 3D printed bending-dominated ligament-based triply periodic cellular polymeric solids, J. Mater. Eng. Perform., vol. 28, no. 4, pp. 2316–2326, 2019. DOI: 10.1007/s11665-019-03982-8.
  • H. Montazerian, et al., Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces, Acta Biomater., vol. 96, pp. 149–160, 2019. DOI: 10.1016/j.actbio.2019.06.040.
  • C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, and D. Raymont, Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, J. Mater. Process. Tech., vol. 214, no. 4, pp. 856–864, 2014. DOI: 10.1016/j.jmatprotec.2013.12.004.
  • D.W. Abueidda, M. Elhebeary, C.-S. (Andrew) Shiang, S. Pang, R.K. Abu Al-Rub, and I.M. Jasiuk, Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study, Mater. Des., vol. 165, pp. 107597, 2019. DOI: 10.1016/j.matdes.2019.107597.
  • D.W. Abueidda, R.K. Abu Al-Rub, A.S. Dalaq, D.-W. Lee, K.A. Khan, and I. Jasiuk, Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces, Mech. Mater., vol. 95, pp. 102–115, 2016. DOI: 10.1016/j.mechmat.2016.01.004.
  • D.W. Abueidda, M. Bakir, R.K. Abu Al-Rub, J.S. Bergström, N.A. Sobh, and I. Jasiuk, Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures, Mater. Des., vol. 122, pp. 255–267, 2017. DOI: 10.1016/j.matdes.2017.03.018.
  • Z. Cai, Z. Liu, X. Hu, H. Kuang, and J. Zhai, The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold, Bio-Des. Manuf., vol. 2, no. 4, pp. 242–255, 2019. DOI: 10.1007/s42242-019-00054-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.