508
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Comparative analysis of mechanical properties and energy absorption capabilities of functionally graded and non-graded thermoplastic sheet gyroid structures

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 5142-5155 | Received 27 Apr 2021, Accepted 25 Jun 2021, Published online: 08 Jul 2021

References

  • G. J. C. van Baar, M. Ruslin, M. van Eijnatten, G. K. Sándor, T. Forouzanfar, and J. Wolff, 3D assessment of damaged bicycle helmets and corresponding craniomaxillo-mandibular skull injuries: A feasibility study, Injury, vol. 48, no. 12, pp. 2872–2878, 2017. DOI: 10.1016/j.injury.2017.09.031.
  • R. Miralbes, D. Ranz, J. Ivens, and J. A. Gomez, Characterization of cork and cork agglomerates under compressive loads by means of energy absorption diagrams, Eur. J. Wood Prod., vol. 79, no. 3, pp. 719–731, 2021. [accessed 2020 Dec 24]. http://link.springer.com/10.1007/s00107-020-01625-7. DOI: 10.1007/s00107-020-01625-7.
  • B. Depreitere, et al., Bicycle-related head injury: A study of 86 cases, Accid. Anal. Prev., vol. 36, no. 4, pp. 561–567, 2004. DOI: 10.1016/S0001-4575(03)00062-9.
  • A. O. Aremu, I. Maskery, and C. A. Tuck, A comparative finite element study of cubic unit cells for selective laser melting. Self-supporting Unit cells. Austin (USA), pp. 1238–1249.
  • M. Ford, P. Matic, and A. Leung, Expanding helmet design methodologies through brain functional area representative threat models. In: Biomedical and Biotechnology Engineering, Vol. 3A. American Society of Mechanical Engineers, San Diego, CA, 2013. p. V03AT03A014. [accessed 2020 Dec 23]. https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2013/56215/San%20Diego,%20California,%20USA/261074. DOI: 10.1115/IMECE2013-64959.
  • A. H. Schoen, Infinite periodic minimal surfaces without self-intersections, NASA Techn. Rep. D-5541, 1970.
  • H. A. Schwarz, Gesammelte Mathematische Abhandlungen, American Mathematical Society, 1972.
  • S. Xu, J. Shen, S. Zhou, X. Huang, and Y. M. Xie, Design of lattice structures with controlled anisotropy, Mater. Des., vol. 93, pp. 443–447, 2016. DOI: 10.1016/j.matdes.2016.01.007.
  • M. Mazur, M. Leary, S. Sun, M. Vcelka, D. Shidid, and M. Brandt, Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM), Int. J. Adv. Manuf. Technol., vol. 84, no. 5–8, pp. 1391–1411, 2016. DOI: 10.1007/s00170-015-7655-4.
  • C. Yan, L. Hao, A. Hussein, and D. Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, Int. J. Mach. Tools Manuf., vol. 62, pp. 32–38, 2012. DOI: 10.1016/j.ijmachtools.2012.06.002.
  • C. Yan, L. Hao, A. Hussein, and P. Young, Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting, J. Mech. Behav. Biomed. Mater., vol. 51, pp. 61–73, 2015. DOI: 10.1016/j.jmbbm.2015.06.024.
  • C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des., vol. 55, pp. 533–541, 2014. DOI: 10.1016/j.matdes.2013.10.027.
  • O. Al-Ketan, M. Adel Assad, and R. K. Abu Al-Rub, Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures, Compos. Struct., vol. 176, pp. 9–19, 2017. DOI: 10.1016/j.compstruct.2017.05.026.
  • M. Smith, Z. Guan, and W. J. Cantwell, Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique, Int. J. Mech. Sci., vol. 67, pp. 28–41, 2013. DOI: 10.1016/j.ijmecsci.2012.12.004.
  • L. Zhang, et al., Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf., vol. 23, pp. 505–515, 2018. DOI: 10.1016/j.addma.2018.08.007.
  • F. S. L. Bobbert, et al., Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomater., vol. 53, pp. 572–584, 2017. DOI: 10.1016/j.actbio.2017.02.024.
  • M. Speirs, B. Van Hooreweder, J. Van Humbeeck, and J. P. Kruth, Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison, J. Mech. Behav. Biomed. Mater., vol. 70, pp. 53–59, 2017. DOI: 10.1016/j.jmbbm.2017.01.016.
  • O. Al-Ketan, R. Rowshan, and R. K. Abu Al-Rub, Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Addit. Manuf., vol. 19, pp. 167–183, 2018. DOI: 10.1016/j.addma.2017.12.006.
  • S. C. Kapfer, S. T. Hyde, K. Mecke, C. H. Arns, and G. E. Schröder-Turk, Minimal surface scaffold designs for tissue engineering, Biomaterials, vol. 32, no. 29, pp. 6875–6882, 2011. DOI: 10.1016/j.biomaterials.2011.06.012.
  • Texto completo. [accessed 2020 Dec 9]. https://www.mdpi.com/1996-1944/12/13/2183/pdf.
  • I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, and I. A. Ashcroft, Compressive failure modes and energy absorption in additively manufactured double gyroid lattices, Addit. Manuf., vol. 16, pp. 24–29, 2017. DOI: 10.1016/j.addma.2017.04.003.
  • I. Maskery, N. T. Aboulkhair, et al., A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting, Mater. Sci. Eng, A, vol. 670, pp. 264–274, 2016. DOI: 10.1016/j.msea.2016.06.013.
  • Z. Chen, Y. M. Xie, X. Wu, Z. Wang, Q. Li, and S. Zhou, On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties, Mater. Des., vol. 183, pp. 108109, 2019. DOI: 10.1016/j.matdes.2019.108109.
  • D. Li, W. Liao, N. Dai, and Y. M. Xie, Comparison of mechanical properties and energy absorption of sheet-based and strut-based gyroid cellular structures with graded densities, Materials, vol. 12, no. 13, p. 2183, 2019. DOI: 10.3390/ma1213.
  • R. Miralbes, D. Ranz, F. J. Pascual, D. Zouzias, and M. Maza, Characterization of additively manufactured triply periodic minimal surface structures under compressive loading, Mech. Adv. Mater. Struct., pp. 1–15, 2020. DOI: 10.1080/15376494.2020.1842948.
  • Y. Li, et al., A review on functionally graded materials and structures via additive manufacturing: From multi‐scale design to versatile functional properties, Adv. Mater. Technol., vol. 5, no. 6, p. 1900981, 2020. DOI: 10.1002/admt.201900981.
  • N. Kladovasilakis, K. Tsongas, and D. Tzetzis, Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures, Biomimetics, vol. 5, no. 3, p. 44, 2020. DOI: 10.3390/biomimetics5030044.
  • S. S. B. Qasim, M. S. Zafar, F. H. Niazi, M. Alshahwan, H. Omar, and U. Daood, Functionally graded biomimetic biomaterials in dentistry: An evidence-based update, J. Biomater. Sci. Polym. Ed., vol. 31, no. 9, pp. 1144–1162, 2020. DOI: 10.1080/09205063.2020.1744289.
  • L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge university Press, Cambridge (UK), 1999.
  • G. Singh and P. M. Pandey, Uniform and graded copper open cell ordered foams fabricated by rapid manufacturing: Surface morphology, mechanical properties and energy absorption capacity, Mater. Sci. Eng. A, vol. 761, p. 138035, 2019. DOI: 10.1016/j.msea.2019.138035.
  • D. S. J. Al-Saedi, S. H. Masood, M. Faizan-Ur-Rab, A. Alomarah, and P. Ponnusamy, Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM, Materials & Design., vol. 144, pp. 32–44, 2018. DOI: 10.1016/j.matdes.2018.01.059.
  • A. Shoen, Infinite periodic minimal surfaces without self-intersection, 1970.
  • M. R. J. Scherer, Double-Gyroid-Structured Functional Materials: Synthesis and Applications, 1st ed., Springer International Publishing, Cham, 2013. DOI: 10.1007/978-3-319-00354-2.
  • V. S. Deshpande, M. F. Ashby, and N. A. Fleck, Foam topology: Bending versus stretching dominated architectures, Acta Mater., vol. 49, no. 6, pp. 1035–1040, 2001. DOI: 10.1016/S1359-6454(00)00379-7.
  • A.-J. Wang, and D. L. McDowell, In-plane stiffness and yield strength of periodic metal honeycombs, J. Eng. Mater. Technol., vol. 126, no. 2, pp. 137–156, 2004. DOI: 10.1115/1.1646165.
  • J. Kadkhodapour, et al., Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell, J. Mech. Behav. Biomed. Mater., vol. 50, pp. 180–191, 2015. DOI: 10.1016/j.jmbbm.2015.06.012.
  • M. Benedetti, et al., Study of the compression behaviour of Ti6Al4V trabecular structures produced by additive laser manufacturing, Materials, vol. 12, no. 9, p. 1471, 2019. DOI: 10.3390/ma12091471.
  • L. Yang, R. Mertens, M. Ferrucci, C. Yan, Y. Shi, and S. Yang, Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties, Mater. Des., vol. 162, pp. 394–404, 2019. DOI: 10.1016/j.matdes.2018.12.007.
  • M. Avalle, G. Belingardi, and R. Montanini, Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, Int. J. Impact Eng., vol. 25, no. 5, pp. 455–472, 2001. DOI: 10.1016/S0734-743X(00)00060-9.
  • J. Miltz and O. Ramon, Energy absorption characteristics of polymeric foams used as cushioning materials, Polym. Eng. Sci., vol. 30, no. 2, pp. 129–133, 1990. DOI: 10.1002/pen.760300210.
  • A. G. Hanssen, M. Langseth, and O. S. Hopperstad, Static and dynamic crushing of square aluminium extrusions with aluminium foam filler, Int. J. Impact Eng., vol. 24, no. 4, pp. 347–383, 2000. DOI: 10.1016/S0734-743X(99)00169-4.
  • A. G. Hanssen, M. Langseth, and O. S. Hopperstad, Static crushing of square aluminium extrusions with aluminium foam filler, Int. J. Mech. Sci., vol. 41, no. 8, pp. 967–993, 1999. DOI: 10.1016/S0020-7403(98)00064-2.
  • E. Bliven, et al., Evaluation of a novel bicycle helmet concept in oblique impact testing, Accid. Anal. Prev., vol. 124, pp. 58–65, 2019. DOI: 10.1016/j.aap.2018.12.017.
  • S. Yu, J. Sun, and J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des., vol. 182, p. 108021, 2019. DOI: 10.1016/j.matdes.2019.108021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.