600
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Creep–fatigue lifetime estimation of SnAgCu solder joints using an artificial neural network approach

, , &
Pages 5225-5231 | Received 24 May 2021, Accepted 30 Jun 2021, Published online: 16 Jul 2021

References

  • S. Su, F. J. Akkara, R. Thaper, A. Alkhazali, M. Hamasha, and S. Hamasha, A state-of-the-art review of fatigue life prediction models for solder joint, J. Electron. Packag., vol. 141, p. 040802, 2019. DOI: 10.1115/1.4043405.
  • S. Wang, Y. Yao, and X. Long, Critical review of size effects on microstructure and mechanical properties of solder joints for electronic packaging, Appl. Sci., vol. 9, no. 2, p. 227, 2019. DOI: 10.3390/app9020227.
  • W. A. Siswanto, K. Borodin, Z.H. Mahmoud, A. Surendar, S. Sajjadifar, G. Abdilova, and J. Chang, Role of aging temperature on thermomechanical fatigue lifetime of solder joints in electronic systems, Soldering Surf. Mount Technol. 2021. DOI: 10.1108/SSMT-07-2020-0029.
  • A. Sharma, H. Yu, I. S. Cho, H. Seo, and B. Ahn, ZrO2 nanoparticle embedded low silver lead free solder alloy for modern electronic devices, Electron. Mater. Lett. , vol. 15, no. 1, pp. 27–35, 2019. DOI: 10.1007/s13391-018-0089-z.
  • K.-K. Xu, L. Zhang, L.-L. Gao, N. Jiang, L. Zhang, and S.-J. Zhong, Review of microstructure and properties of low temperature lead-free solder in electronic packaging, Sci. Technol. Adv. Mater. , vol. 21, no. 1, pp. 689–711, 2020. DOI: 10.1080/14686996.2020.1824255.
  • C. Cai, J. Xu, H. Wang, and S. B. Park, A comparative study of thermal fatigue life of Eutectic Sn-Bi, Hybrid Sn-Bi/SAC and SAC solder alloy BGAs, Microelectron. Reliab., vol. 119, p. 114065, 2021. DOI: 10.1016/j.microrel.2021.114065.
  • A. Surendar, V. Samavatian, A. Maseleno, A. Z. Ibatova, and M. Samavatian, Effect of solder layer thickness on thermo-mechanical reliability of a power electronic system, J. Mater. Sci. Mater. Electron., 2018. DOI: 10.1007/s10854-018-9667-y.
  • D. Ghaderi, M. Pourmahdavi, V. Samavatian, O. Mir, and M. Samavatian, Combination of thermal cycling and vibration loading effects on the fatigue life of solder joints in a power module, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 233, pp. 1753–1763, 2019. DOI: 10.1177/1464420718780525.
  • M. Sakane, T. Shiratsuchi, and Y. Tsukada, Grain boundary sliding model for assessing creep-fatigue life of Sn37Pb eutectic solder, Int. J. Fatigue., vol. 146, p. 106132, 2021. DOI: 10.1016/j.ijfatigue.2020.106132.
  • H.-C. Yang, and T.-C. Chiu, A unified viscoplastic model for characterizing the softening behavior of the Sn3.0Ag0.5Cu solder under monotonic and cyclic loading conditions, Microelectron. Reliab., vol. 119, p. 114086, 2021. DOI: 10.1016/j.microrel.2021.114086.
  • X. Huang, Z. Wang, and Y. Yu, Thermomechanical properties and fatigue life evaluation of SnAgCu solder joints for microelectronic power module application, J. Mater. Res. Technol., vol. 9, no. 3, pp. 5533–5541, 2020. DOI: 10.1016/j.jmrt.2020.03.078.
  • X. Long, X. He, and Y. Yao, An improved unified creep-plasticity model for SnAgCu solder under a wide range of strain rates, J. Mater. Sci. ., vol. 52, no. 10, pp. 6120–6137, 2017. DOI: 10.1007/s10853-017-0851-x.
  • V. Samavatian, H. Iman-Eini, Y. Avenas, and M. Samavatian, Effects of creep failure mechanisms on thermo-mechanical reliability of solder joints in power semiconductors, IEEE Trans. Power Electron. ., vol. 35, no. 9, pp. 8956–8964, 2020. DOI: 10.1109/TPEL.2020.2973312.
  • Y. Xu, et al., Intermetallic size and morphology effects on creep rate of Sn-3Ag-0.5Cu solder, Int. J. Plast., vol. 137, p. 102904, 2021. DOI: 10.1016/j.ijplas.2020.102904.
  • F. Shen, B. Zhao, L. Li, C. K. Chua, and K. Zhou, Fatigue damage evolution and lifetime prediction of welded joints with the consideration of residual stresses and porosity, Int. J. Fatigue., vol. 103, pp. 272–279, 2017. DOI: 10.1016/j.ijfatigue.2017.06.014.
  • D. Y. Chen, M. Osterman, and A. Dasgupta, Energy based modeling for temperature cycling induced tin silver copper solder interconnect fatigue life, Microelectron. Reliab., vol. 109, p. 113651, 2020. DOI: 10.1016/j.microrel.2020.113651.
  • Q. S. Zhu, F. Gao, H. C. Ma, Z. Q. Liu, J. D. Guo, and L. Zhang, Failure behavior of flip chip solder joint under coupling condition of thermal cycling and electrical current, J. Mater. Sci: Mater. Electron. ., vol. 29, no. 6, pp. 5025–5033, 2018. DOI: 10.1007/s10854-017-8464-3.
  • O. Djedidi, M. A. Djeziri, and S. Benmoussa, Remaining useful life prediction in embedded systems using an online auto-updated machine learning based modeling, Microelectron. Reliab., vol. 119, p. 114071, 2021. DOI: 10.1016/j.microrel.2021.114071.
  • H. A. Farroh, A. Nasr, and K. A. Sharshar, A study of the performance of an N-channel MOSFET under gamma radiation as a dosimeter, Journal of Elec. Materi. ., vol. 49, no. 10, pp. 5762–5772, 2020. DOI: 10.1007/s11664-020-08330-4.
  • A. Chandrasekaran, D. Kamal, R. Batra, C. Kim, L. Chen, and R. Ramprasad, Solving the electronic structure problem with machine learning, NPJ Comput, Mater., vol. 5, p. 22, 2019. DOI: 10.1038/s41524-019-0162-7.
  • J. Chen, T. Lange, M. Andjelkovic, A. Simevski, and M. Krstic, Prediction of solar particle events with SRAM-based soft error rate monitor and supervised machine learning, Microelectron, Reliab., vol. 114, p. 113799, 2020. DOI: 10.1016/j.microrel.2020.113799.
  • Y.-M. Chang, C.-C. Wei, J. Chen, and P. Hsieh, An implementation of health prediction in SMT solder joint via machine learning, 2019 IEEE International Conference on Big Data Smart Computer, pp. 1–4, 2019. DOI: 10.1109/BIGCOMP.2019.8679428.
  • M. van Veenhuizen, Void detection in solder bumps with deep learning, Microelectron. Reliab., vol. 88-90, pp. 315–320, 2018. DOI: 10.1016/j.microrel.2018.06.081.
  • C. C. A. Yuan, and C.-C. Lee, Solder Joint reliability modeling by sequential artificial neural network for glass wafer level chip scale package, IEEE Access ., vol. 8, pp. 143494–143501, 2020. DOI: 10.1109/ACCESS.2020.3014156.
  • A. Kunwar, Y. A. Coutinho, J. Hektor, H. Ma, and N. Moelans, Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface, J. Mater. Sci. Technol., vol. 59, pp. 203–219, 2020. DOI: 10.1016/j.jmst.2020.04.046.
  • Y. Sung, and J. Robert, Machine learning framework for predicting reliability of solder joints, Soldering Surf. Mount Technol., vol. 32, pp. 82–92, 2019. DOI: 10.1108/SSMT-04-2019-0013.
  • V. Samavatian, M. Fotuhi-Firuzabad, M. Samavatian, P. Dehghanian, and F. Blaabjerg, Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics, Sci. Rep. ., vol. 10, no. 1, p. 14821, 2020. DOI: 10.1038/s41598-020-71926-7.
  • Elakkiya R, G. Kavithaa, Vahid Samavatian, K. Alhaifi, Alireza Kokabi, and Hossein Moayedi, Reliability enhancement of a power semiconductor with optimized solder layer thickness, IEEE Trans. Power Electron. ., vol. 35, no. 6, pp. 6397–6404, 2020. DOI: 10.1109/TPEL.2019.2951815.
  • E. H. Amalu, and N. N. Ekere, Modelling evaluation of Garofalo-Arrhenius creep relation for lead-free solder joints in surface mount electronic component assemblies, J. Manuf. Syst., vol. 39, pp. 9–23, 2016. DOI: 10.1016/j.jmsy.2016.01.002.
  • A. Syed, Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints, 2004 Proceedings. 54th Electron. Components Technol. Conf. (IEEE Cat. No.04CH37546), IEEE, pp. 737–746, 2004.
  • Y. Chen, Y. Jin, and R. Kang, Coupling damage and reliability modeling for creep and fatigue of solder joint, Microelectron, Reliab., vol. 75, pp. 233–238, 2017. DOI: 10.1016/j.microrel.2017.03.016.
  • E. G. Ellison, and A. Al‐Zamily, Fracture and life prediction under thermal‐mechanical strain cycling, Fatigue Fract, Eng. Mater. Struct. , vol. 17, no. 1, pp. 53–67, 1994. DOI: 10.1111/j.1460-2695.1994.tb00772.x.
  • M. Samavatian, R. Gholamipour, and V. Samavatian, Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach, Comput. Mater. Sci., vol. 186, p. 110025, 2021. DOI: 10.1016/j.commatsci.2020.110025.
  • J. a. Depiver, S. Mallik, and D. Harmanto, Solder joint failures under thermo-mechanical loading conditions – a review, Adv. Mater. Process. Technol., vol. 7, no. 1, pp. 1–26, 2021. DOI: 10.1080/2374068X.2020.1751514.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.