140
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical and numerical fracture analysis of bovine cortical bone under tensile loading in mode I and mixed-mode fracture

& ORCID Icon
Pages 5311-5325 | Received 24 Dec 2020, Accepted 06 Jul 2021, Published online: 05 Jan 2022

References

  • J. Melvin, Fracture mechanics of bone, J. Biomech. Eng., vol. 115, no. 4B, pp. 549–554, 1993. DOI: 10.1115/1.2895538.
  • D. T. Reilly and A. H. Burstein, The elastic and ultimate properties of compact bone tissue, J. Biomech., vol. 8, no. 6, pp. 393–405, 1975. DOI: 10.1016/0021-9290(75)90075-5.
  • P. Zioupos and J. D. Currey, The extent of microcracking and the morphology of microcracks in damaged bone, J. Mater. Sci., vol. 29, no. 4, pp. 978–986, 1994. DOI: 10.1007/BF00351420.
  • D. B. Burr and T. Stafford, Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage, Clin. Orthop. Relat. Res., no. 260, pp. 305–308, 1990.
  • B. Martin, Mathematical model for repair of fatigue damage and stress fracture in osteonal bone, J. Orthop. Res., vol. 13, no. 3, pp. 309–316, 1995. DOI: 10.1002/jor.1100130303.
  • Y. N. Yeni and D. P. Fyhrie, Fatigue damage–fracture mechanics interaction in cortical bone, Bone, vol. 30, no. 3, pp. 509–514, 2002. DOI: 10.1016/S8756-3282(01)00696-2.
  • Fergal J. O'Brien, David Taylor, and T. Clive Lee, The effect of bone microstructure on the initiation and growth of microcracks, J. Orthop. Res., vol. 23, no. 2, pp. 475–480, 2005. DOI: 10.1016/j.orthres.2004.08.005.
  • D. B. Burr, M. R. Forwood, D. P. Fyhrie, R. B. Martin, M. B. Schaffler, and C. H. Turner, Bone microdamage and skeletal fragility in osteoporotic and stress fractures, J. Bone Miner. Res., vol. 12, no. 1, pp. 6–15, 1997. DOI: 10.1359/jbmr.1997.12.1.6.
  • G. C. Sih, P. C. Paris, and G. R. Irwin, On cracks in rectilinearly anisotropic bodies, Int. J. Fract., vol. 1, no. 3, pp. 189–203, 1965. DOI: 10.1007/BF00186854.
  • E. M. Wu, Application of fracture mechanics to anisotropic plates, J. Appl. Mech., vol. 34, no. 4, pp. 967–974, 1967. DOI: 10.1115/1.3607864.
  • H. T. Corten, Fracture mechanics of composites. In: Fracture of Nonmetals and Composites, Academic Press, New York, pp. 675–769, 1972.
  • J. W. Melvin and F. G. Evans, Crack Propagation in Bone, Biomechanics Symposium ASME New York, NY, pp. 87–88, 1973.
  • W. Bonfield and P. K. Datta, Impact fracture of compact bone in a shock tube, J. Mater. Sci., vol. 9, no. 10, pp. 1609–1614, 1974. DOI: 10.1007/BF00540759.
  • W. Bonfield and P. K. Datta, Fracture toughness of compact bone, J. Biomech., vol. 9, no. 3, pp. 131–134, 1976. DOI: 10.1016/0021-9290(76)90151-2.
  • W. Bonfield, Orientation and age-related dependence of the fracture toughness of cortical bone. In: Biomechanics. Current Interdisciplinary Research, Martinus Nijhoff, Dordrecht, Netherlands, pp. 185–189, 1984.
  • T. M. Wright and W. C. Hayes, Fracture mechanics parameters for compact bone—effects of density and specimen thickness, J. Biomech., vol. 10, no. 7, pp. 419–430, 1977. DOI: 10.1016/0021-9290(77)90019-7.
  • D. M. Robertson, D. Robertson, and C. R. Barrett, Fracture toughness, critical crack length and plastic zone size in bone, J. Biomech., vol. 11, no. 8–9, pp. 359–364, 1978. DOI: 10.1016/0021-9290(78)90070-2.
  • W. Bonfield, M. D. Grynpas, and R. J. Young, Crack velocity and the fracture of bone, J. Biomech., vol. 11, no. 10–12, pp. 473–479, 1978. DOI: 10.1016/0021-9290(78)90058-1.
  • J. C. Behiri and W. Bonfield, Fracture mechanics of bone—the effects of density, specimen thickness and crack velocity on longitudinal fracture, J. Biomech., vol. 17, no. 1, pp. 25–34, 1984. DOI: 10.1016/0021-9290(84)90076-9.
  • J. C. Behiri and W. Bonfield, Orientation dependence of the fracture mechanics of cortical bone, J. Biomech., vol. 22, no. 8–9, pp. 863–872, 1989. DOI: 10.1016/0021-9290(89)90070-5.
  • D. D. Moyle and A. J. Gavens, Fracture properties of bovine tibial bone, J. Biomech., vol. 19, no. 11, pp. 919–927, 1986. DOI: 10.1016/0021-9290(86)90187-9.
  • T. L. Norman, D. Vashishth, and D. Burr, Mode I fracture toughness of human bone. In: Winter Annual Meeting of the American Society of Mechanical Engineers, pp. 361–364, 1991.
  • T. L. Norman, D. Vashishth, and D. B. Burr, Effect of groove on bone fracture toughness, J. Biomech., vol. 25, no. 12, pp. 1489–1492, 1992. DOI: 10.1016/0021-9290(92)90061-5.
  • G. Lewis, Fracture toughness and quantitative computed tomography number of human tibia cortical bone, J. Musculoskelet. Res., vol. 02, no. 02, pp. 151–165, 1998. DOI: 10.1142/S0218957798000160.
  • F. Libonati and L. Vergani, Bone toughness and crack propagation: an experimental study. In: XVII International Colloquium on Mechanical Fatigue of Metals, ICMFM 2014, vol. 74, pp. 464–467, Elsevier Ltd., 2014. DOI: 10.1016/j.proeng.2014.06.298.
  • N. K. Sharma, D. K. Sehgal, and R. K. Pandey, Effect of orientation on elastic–plastic fracture toughness of cortical bone. In: Proceedings of the World Congress on Engineering, vol. 3, pp. 2298–2302, 2011.
  • J. Yan, J. J. Mecholsky, Jr., and K. B. Clifton , How tough is bone? Application of elastic–plastic fracture mechanics to bone, Bone, vol. 40, no. 2, pp. 479–484, 2007. DOI: 10.1016/j.bone.2006.08.013.
  • E. M. Craciun, A. Rabaea, M. F. Popa, and C. I. Mihailov, Crack propagation in the human bone. Mode I of fracture, Analele Universitatii" Ovidius, Constanta-Seria Matematica, vol. 26, no. 2, pp. 59–70, 2018. DOI: 10.2478/auom-2018-0018.
  • E. M. Crăciun, M. Marin, and A. Răbâea, Anti-plane crack in human bone. I. Mathematical modelling. Analele Universitatii" Ovidius, Constanta-Seria Matematica, vol. 26, no. 1, pp. 81–90, 2018. DOI: 10.2478/auom-2018-0004.
  • A. R. Najafi, A. R. Arshi, M. R. Eslami, S. Fariborz, and M. Moeinzadeh, Haversian cortical bone model with many radial microcracks: an elastic analytic solution, Med. Eng. Phys., vol. 29, no. 6, pp. 708–717, 2007. DOI: 10.1016/j.medengphy.2006.08.001.
  • M. M. Arouche, W. Wang, S. Teixeira de Freitas, and S. de Barros, Strain-based methodology for mixed-mode I + II fracture: a new partitioning method for bi-material adhesively bonded joints, J. Adhes., vol. 95, no. 5–7, pp. 385–404, 2019. DOI: 10.1080/00218464.2019.1565756.
  • T. Willett, D. Josey, R. X. Z. Lu, G. Minhas, and J. Montesano, The micro-damage process zone during transverse cortical bone fracture: no ears at crack growth initiation, J. Mech. Behav. Biomed. Mater., vol. 74, pp. 371–382, 2017. DOI: 10.1016/j.jmbbm.2017.06.029.
  • D. Camas, P. Lopez-Crespo, A. Gonzalez-Herrera, and B. Moreno, Numerical and experimental study of the plastic zone in cracked specimens, Eng. Fract. Mech., vol. 185, pp. 20–32, 2017. DOI: 10.1016/j.engfracmech.2017.02.016.
  • H. Gao, Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials, Int. J. Fract., vol. 138, no. 1–4, pp. 101–137, 2006. DOI: 10.1007/s10704-006-7156-4.
  • M. Martinez and M. H. Aliabadi, Fracture mechanics of bone using the dual boundary element method, WIT Transactions on Biomedicine and Health, vol. 3, 1970. DOI: 10.2495/BSIM960161.
  • M. N. Nguyen, N. T. Nguyen, T. T. Truong, and T. Q. Bui, Thermal–mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive-interpolation element (XCQ4), Eng. Fract. Mech., vol. 206, pp. 89–113, 2019. DOI: 10.1016/j.engfracmech.2018.11.036.
  • L. Vergani, C. Colombo, and F. Libonati, Crack propagation in cortical bone: a numerical study, Proc. Mater. Sci., vol. 3, pp. 1524–1529, 2014. DOI: 10.1016/j.mspro.2014.06.246.
  • A. Gustafsson, H. Khayyeri, M. Wallin, and H. Isaksson, An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM, J. Mech. Behav. Biomed. Mater., vol. 90, pp. 556–565, 2019. DOI: 10.1016/j.jmbbm.2018.09.045.
  • A. Ural and S. Mischinski, Multiscale modeling of bone fracture using cohesive finite elements, Eng. Fract. Mech., vol. 103, pp. 141–152, 2013. DOI: 10.1016/j.engfracmech.2012.05.008.
  • F. A. M. Pereira, M. F. S. F. de Moura, N. Dourado, J. J. L. Morais, and M. I. R. Dias , Bone fracture characterization under mixed-mode I + II loading using the single leg bending test, Biomech. Model. Mechanobiol., vol. 13, no. 6, pp. 1331–1339, 2014. DOI: 10.1007/s10237-014-0575-7.
  • E. E. Gdoutos. Fracture Mechanics: An Introduction, vol. 123, Springer Science & Business Media, Berlin, 2006.
  • E. Alizadeh and M. Dehestani, Analytical and numerical fracture analysis of pressure vessel containing wall crack and reinforcement with CFRP laminates, Thin-Walled Struct., vol. 127, pp. 210–220, 2018. DOI: 10.1016/j.tws.2018.02.009.
  • M. H. Sadd, Elasticity: Theory, Applications, and Numerics, Academic Press, USA, 2009.
  • F. A. M. Pereira, J. J. L. Morais, N. Dourado, M. F. S. F. De Moura, and M. I. R. Dias , Fracture characterization of bone under mode II loading using the end loaded split test , J. Mech. Behav. Biomed. Mater., vol. 4, no. 8, pp. 1764–1773, 2011. DOI: 10.1016/j.jmbbm.2011.05.033.
  • R. C. Shah, Fracture under combined modes in 4340 steel. In: Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II. ASTM International, 1974, January.
  • S. Li, A. Abdel-Wahab, E. Demirci, and V. V. Silberschmidt, Fracture process in cortical bone: X-FEM analysis of microstructured models. In: Fracture Phenomena in Nature and Technology, Springer, Cham, pp. 43–55, 2014.
  • J. F. S. Junior, E. P. Pellizzer, F. R. Verri, and P. S. P. de Carvalho, Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study, Mater. Sci. Eng. C Mater. Biol. Appl., vol. 33, no. 8, pp. 4700–4714, 2013. DOI: 10.1016/j.msec.2013.07.027.
  • N. K. Sharma, D. K. Sehgal, R. K. Pandey, and R. Pal, Finite element simulation of cortical bone under different loading and anisotropic yielding situations. In: Proceedings of the World Congress on Engineering and Computer Science, vol. 2, no. 1, 2012, October.
  • L. J. Harris, R. Chao, R. Bloch, and V. Weingarten, A three-dimensional finite element analysis of the proximal third of the femur. In: Proceedings of the 24th Orthopedic Research Society, vol. 3, p. 16, ORS, Chicago, 1978.
  • H. Cezayirlioglu, E. Bahniuk, D. T. Davy, and K. G. Heiple, Anisotropic yield behavior of bone under combined axial force and torque, J. Biomech., vol. 18, no. 1, pp. 61–69, 1985. DOI: 10.1016/0021-9290(85)90045-4.
  • Y. Tanabe and W. Bonfield, Effects of initial crack length and specimen thickness on fracture toughness of compact bone, JSME Int. J., Ser. C., vol. 42, no. 3, pp. 532–538, 1999. DOI: 10.1299/jsmec.42.532.
  • K. Hibbitt, ABAQUS: User's Manual: Version 6.13, 2013.
  • T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal re meshing, Int. J. Numer. Meth. Eng., vol. 45, no. 5, pp. 601–620, 1999. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
  • J. M. Melenk and I. Babuška, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng., vol. 139, no. 1–4, pp. 289–314, 1996. DOI: 10.1016/S0045-7825(96)01087-0.
  • N. Moes and T. Belytschko, Extended finite element method for cohesive crack growth, Eng. Fract. Mech., vol. 69, no. 7, pp. 813–833, 2002. DOI: 10.1016/S0013-7944(01)00128-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.