158
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement of impact properties of CFRP by inserting the non-hydrophobized cellulose nanofiber dispersion layer using an aqueous solution of epoxy resin

ORCID Icon, , , , &
Pages 5350-5359 | Received 26 May 2021, Accepted 07 Jul 2021, Published online: 21 Jul 2021

References

  • E. Maccaferri, L. Mazzocchetti, et al., Rubbery nanofibrous interleaves enhance fracture toughness and damping of CFRP laminates, Mater Design., vol. 195, pp. 109049, 2020. DOI: 10.1016/j.matdes.2020.109049.
  • J. H. Eun, D. H. Kim, and J. S. Lee, Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates, Compos Part A., vol. 137, pp. 105987, 2020. DOI: 10.1016/j.compositesa.2020.105987.
  • V. Carvelli, A. Betti, and T. Fujii, Fatigue and Izod impact performance of carbon plain weave textile reinforced epoxy modified with cellulose microfibrils and rubber nanoparticles, Compos. Part A., vol. 84, pp. 26–35, 2016. DOI: 10.1016/j.compositesa.2016.01.005.
  • S. Cai, Y. Li, Y. Liu, and W. Mai, Effect of electrospun polysulfone/cellulose nanocrystals interleaves on the interlaminar fracture toughness of carbon fiber/epoxy composites, Compos. Sci. Technol., vol. 181, pp. 107673, 2019. DOI: 10.1016/j.compscitech.2019.05.030.
  • K. Oksman, et al., Review of the recent developments in cellulose nanocomposite processing, Compos. Part A: Appl. Sci. Manufact., vol. 83, pp. 2–18, 2016. DOI: 10.1016/j.compositesa.2015.10.041.
  • K. Ramamoorthy, et. al., Performance of biocomposites from surface modified regenerated cellulose fibers and lactic acid thermoset bioresin, Cellulose., vol. 22, no. 4, pp. 2507–2528, 2015. DOI: 10.1007/s10570-015-0643-x.
  • K. Katagiri, K. Sasaki, S. Honda, et al., CFRP manufacturing method using electrodeposition resin molding for curvilinear fiber arrangements, Compos. Part A: Appl. Sci. Manufact., vol. 102, pp. 108–116, 2017. DOI: 10.1016/j.compositesa.2017.07.006.
  • K. Katagiri, et. al., Enhancement of mechanical properties of CFRP manufactured by using electro-activated deposition resin molding method with the application of CNF without hydrophobic treatment, Compos. Sci. Technol.., vol. 169, pp. 203–208, 2019. DOI: 10.1016/j.compscitech.2018.10.030.
  • R. Murakami, History and principles for electrodeposition coating, J. Surf. Finish. Soc. Jpn., vol. 53, no. 5, pp. 288–292, 2002. (in Japanese). DOI: 10.4139/sfj.53.288.
  • H. Sakamoto, Environment friendly electrolyzed activate deposition material with a high electric insulation, J. Oleo Sci., vol. 5, no. 10, pp. 489–496, 2005. (in Japanese). DOI: 10.5650/oleoscience.5.489.
  • P. Dhar, and V. Katiyar, 3 Benchmarking nanocellulose production: scale-up strategies and life-cycle assessment, Cellulose Nanocryst., pp. 49–79, 2020.
  • A. Isogai, Emerging nanocellulose technologies: Recent developments, Adv. Mater., vol. 31, no. 29, pp. 2000630, 2020.
  • K. Katagiri, T. Totani, T. Isono, et al., Manufacturing method of the heat-storable carbon fiber reinforced plastics with applying trans-1,4-polybutadiene by using cellulose nanofibers and electrodeposition solution, J. Storage. Mater., vol. 31, pp. 101636, 2020. DOI: 10.1016/j.est.2020.101636.
  • ASTM international, ASTM D790-17 Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, 2017.
  • International Organization for Standardization, ISO 179-2 Plastics - Determination of Charpy impact properties - Part 2: Instrumented impact test, 2020.
  • A. Fernandez-Canteli, et al., Dynamic fracture toughness measurements in composites by instrumented Charpy testing: influence of aging, Compos. Sci. Technol., vol. 62, no. 10-11, pp. 1315–1325, 2002.
  • M. Kuhtz, N. Buschner, et al., An experimental study on the bending response of multi-layered fibre-metal-laminates, J. Compos. Mater., vol. 53, no. 18, pp. 2579–2591, 2019. DOI: 10.1177/0021998319835595.
  • A. Pegoretti, I. Cristelli, et al., Experimental optimization of the impact energy absorption of epoxy–carbon laminates through controlled delamination, Compos. Sci. Technol., vol. 68, no. 13, pp. 2653–2662, 2008. DOI: 10.1016/j.compscitech.2008.04.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.