286
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Investigations on crush behavior and energy absorption characteristics of GFRP composite conical frusta with a cutout under axial compression loading

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5360-5377 | Received 23 Oct 2020, Accepted 08 Jul 2021, Published online: 25 Jul 2021

References

  • H. Han, F. Taheri, and N. Pegg, Crushing behaviors and energy absorption efficiency of hybrid pultruded and ±45°braided tubes, Mech. Adv. Mater., vol. 18, no. 4, pp. 287–300, 2011. DOI: 10.1080/15376494.2010.506103.
  • Z. Wang, X. Wang, T. Gao, and C. Shi, Mechanical behavior and deformation mechanism of triply periodic minimal surface sheet under compressive loading, Mech. Adv. Mater. Struct., pp. 1–14, 2020. DOI: 10.1080/15376494.2020.1829756.
  • M. A. Guler, M. E. Cerit, B. Bayram, B. Gerceker, and E. Karakaya, The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading, Int. J. Crashworthiness., vol. 15, no. 4, pp. 377–390, 2010. DOI: 10.1080/13588260903488750.
  • H. Han, F. Taheri, and N. Pegg, Quasi-static and dynamic crushing behaviors of aluminum and steel tubes with a cutout, Thin-Wall Struct., vol. 45, no. 3, pp. 283–300, 2007. DOI: 10.1016/j.tws.2007.02.010.
  • R. Kolahchi, S.-P. Zhu, B. Keshtegar, and N.-T. Trung, Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial, Aerosp. Sci. Technol., vol. 98, pp. 105656, 2020. DOI: 10.1016/j.ast.2019.105656.
  • S. H. Hashemi-Karouei, A. M. Goudarzi, F. Morshedsolouk, and S. S. M. Ajarostaghi, Analytical and finite element investigations of the cross-arranged trapezoidal- and sinusoidal-corrugated-cores panels. Mech. Adv. Mater. Struct., pp. 1–14, 2020. DOI: 10.1080/15376494.2020.1834652.
  • V. V. Karpov, Models of the shells having ribs, reinforcement plates and cutouts, Int. J. Solids Struct., vol. 146, pp. 117–135, 2018. DOI: 10.1016/j.ijsolstr.2018.03.024.
  • S. Yao, Z. Li, W. Ma, and P. Xu, Crashworthiness analysis of a straight-tapered shrink tube, Int J Mech Sci., vol. 157-158, pp. 512–527, 2019. DOI: 10.1016/j.ijmecsci.2019.04.058.
  • M. Ferdynus, M. Kotełko, and M. Urbaniak, Crashworthiness performance of thin-walled prismatic tubes with corner dents under axial impact-Numerical and experimental study, Thin-Wall Struct., vol. 144, pp. 106239, 2019. DOI: 10.1016/j.tws.2019.106239.
  • F. Shadmehri, S. V. Hoa, and M. Hojjati, Buckling of conical composite shells, Compos. Struct., vol. 94, no. 2, pp. 787–792, 2012. DOI: 10.1016/j.compstruct.2011.09.016.
  • M. Kathiresan, K. Manisekar, and V. Manikandan, Performance analysis of fibre metal laminated thin conical frusta under axial compression, Compos. Struct., vol. 94, no. 12, pp. 3510–3519, 2012. DOI: 10.1016/j.compstruct.2012.05.026.
  • M. Kathiresan, K. Manisekar, and V. Manikandan, Crashworthiness analysis of glass fibre/epoxy laminated thin-walled composite conical frusta under axial compression, Compos. Struct., vol. 108, pp. 584–599, 2014. https://doi.org/10.1016/j.compstruct.2013.09.060. DOI: 10.1016/j.compstruct.2013.09.060.
  • M. Kathiresan, and K. Manisekar K, Axial crush behaviours and energy absorption characteristics of aluminium and E-glass/epoxy over-wrapped aluminium conical frusta under low-velocity impact loading, Compos. Struct., vol. 136, pp. 86–100, 2016. DOI: 10.1016/j.compstruct.2015.09.052.
  • M. Kathiresan, and K. Manisekar, Low-velocity axial collapse behavior of E-glass fiber/epoxy composite conical frusta, Compos. Struct., vol. 166, pp. 1–11, 2017. DOI: 10.1016/j.compstruct.2017.01.041.
  • A. Taştan, E. Acar, M. A. Güler, and Ü. Kılınçkaya, Optimum crashworthiness design of tapered thin-walled tubes with lateral circular cutouts, Thin-Wall Struct., vol. 107, pp. 543–553, 2016. DOI: 10.1016/j.tws.2016.07.018.
  • M. Kathiresan, Influence of shape, size and location of cutouts on crashworthiness performance of aluminium conical frusta under quasi-static axial compression, Thin-Wall Struct., vol. 154, pp. 106793, 2020. DOI: 10.1016/j.tws.2020.106793.
  • S. P. Ng, K. Lau, and P. Tse, 3D finite element analysis of tensile notched strength of 2/2 twill weave fabric composites with drilled circular hole, Compos B Eng., vol. 31, no. 2, pp. 113–132, 2000. DOI: 10.1016/S1359-8368(99)00078-5.
  • G. K. Vinay, J. R. Navin, J. R. Eric, and A. R. Damodar, Intralaminar and interlaminar progressive failure analyses of composite panels with circular cutouts, Compos. Struct., vol. 64, no. 1, pp. 91–105, 2004. DOI: 10.1016/S0263-8223(03)00217-4.
  • P. Jain, and A. Kumar, Post-buckling response of square laminates with a central circular/elliptical cutout, Compos Struct., vol. 65, no. 2, pp. 179–185, 2004. DOI: 10.1016/j.compstruct.2003.10.014.
  • M. W. Hilburger, and J. H. Starnes, Jr. Buckling behavior of compression-loaded composite cylindrical shells with reinforced cutouts, Int. J. Nonl. Mech., vol. 40, no. 7, pp. 1005–1021, 2005. DOI: 10.1016/j.ijnonlinmec.2005.02.001.
  • V. Anil, C. S. Upadhyay, and N. G. R. Iyengar, Stability analysis of composite laminate with and without rectangular cutout under biaxial loading, Compos Struct., vol. 80, no. 1, pp. 92–104, 2007. DOI: 10.1016/j.compstruct.2006.04.088.
  • D. K. Nageswara Rao, M. Ramesh Babu, K. Raja Narender Reddy, and D. Sunil, Stress around square and rectangular cutouts in symmetric laminates, Compos Struct., vol. 92, no. 12, pp. 2845–2859, 2010. DOI: 10.1016/j.compstruct.2010.04.010.
  • D. Kumar, and S. B. Singh, Postbuckling strengths of composite laminate with various shaped cutouts under in-plane shear, Compos Struct., vol. 92, no. 12, pp. 2966–2978, 2010. DOI: 10.1016/j.compstruct.2010.05.008.
  • M. Aydin Komur, F. Sen, A. Atas, and N. Arslan, Buckling analysis of laminated composite plates with an elliptical/circular cutout using FEM, Adv. EngSoftw., vol. 41, no. 2, pp. 161–164, 2010. DOI: 10.1016/j.advengsoft.2009.09.005.
  • S. Shi, Z. Sun, M. Ren, H. Chen, and X. Hu, Buckling response of advanced grid stiffened carbon–fiber composite cylindrical shells with reinforced cutouts, Compos: Part B., vol. 44, no. 1, pp. 26–33, 2013. DOI: 10.1016/j.compositesb.2012.07.044.
  • E. G. Koricho, A. Khomenko, T. Fristedt, and M. Haq, Innovative tailored fiber placement technique for enhanced damage resistance in notched composite laminate, Compos Struct., vol. 120, pp. 378–385, 2015. DOI: 10.1016/j.compstruct.2014.10.016.
  • Z. C. Su, T. E. Tay, M. Ridha, and B. Y. Chen, Progressive damage modeling of open-hole composite laminates under compression, Compos Struct., vol. 122, pp. 507–517, 2015. DOI: 10.1016/j.compstruct.2014.12.022.
  • X. Li, W. Gao, and W. Liu, Post-buckling progressive damage of CFRP laminates with a large-sized elliptical cutout subjected to shear loading, Compos Struct., vol. 128, pp. 313–321, 2015. DOI: 10.1016/j.compstruct.2015.03.038.
  • X. Li, W. Gao, and W. Liu, The bearing behavior and failure characteristic of CFRP laminate with cutout under shearing load: Part II. Numerical simulations, Compos Struct., vol. 141, pp. 366–374, 2016. DOI: 10.1016/j.compstruct.2016.01.034.
  • Q. Liu, J. Ma, X. Xu, Y. Wu, and Q. Li, Load bearing and failure characteristics of perforated square CFRP tubes under axial crushing, Compos Struct., vol. 160, pp. 23–35, 2017. DOI: 10.1016/j.compstruct.2016.10.032.
  • S. Anitha Priya Dharshani, A. Meher Prasad, and R. Sundaravadivelu, Analysis of GFRP stiffened composite plates with rectangular cutout, Compos. Struct., vol. 169, pp. 42–51, 2017. DOI: 10.1016/j.compstruct.2016.10.054.
  • F. Taheri-Behrooz, M. Omidi, and M. M. Shokrieh, Experimental and numerical investigation of buckling behavior of composite cylinders with cutout, Thin-Wall Struct., vol. 116, pp. 136–144, 2017. DOI: 10.1016/j.tws.2017.03.009.
  • D. Pastorino, A. Blázquez, B. López-Romano, and F. París, Closed-form methodology for stress analysis of composite plates with cutouts and non-uniform lay-up, Compos. Struct., vol. 212, pp. 389–397, 2019. DOI: 10.1016/j.compstruct.2019.01.013.
  • P. Hao, Y. Wang, Z. Wu, X. Liu, B. Wang, and W. Huang, Progressive optimization of complex shells with cutouts using a smart design domain method, Comput. Method Appl. M., vol. 362, pp. 112814, 2020. DOI: 10.1016/j.cma.2019.112814.
  • R. Khakimova, R. Degenhardt, and D. Wilcken, Experimental and numerical investigation of CFRP cylinders with circular cutouts under axial compression, Thin–Wall Struct., vol. 147, pp. 106526, 2020. DOI: 10.1016/j.tws.2019.106526.
  • Q. Liu, K. Liufu, Z. Cui, J. Li, J. Fang, and Q. Li, Multiobjective optimization of perforated square CFRP tubes for crashworthiness, Thin–Wall Struct., vol. 149, pp. 106628, 2020. DOI: 10.1016/j.tws.2020.106628.
  • K. Tian, X. Ma, Z. Li, S. Lin, B. Wang, and A. M. Waas, A multi-fidelity competitive sampling method for surrogate-based stacking sequence optimization of composite shells with multiple cutouts, Int. J. Solids Struct., vol. 193–194, pp. 1–12, 2020. DOI: 10.1016/j.ijsolstr.2020.02.007.
  • Z. Song, S. Ming, T. Li, K. Du, C. Zhou, and B. Wang, Improving the energy absorption capacity of square CFRP tubes with cutout by introducing chamfer, Int. J. Mech. Sci., vol. 189, pp. 105994, 2021. DOI: 10.1016/j.ijmecsci.2020.105994.
  • Abaqus® 6.7-1 user manual.
  • M. Kathiresan, Effects of cutout and impact loading condition on crashworthiness characteristics of conical frusta, Int. J. Crashworthiness., vol. 202, pp. 1–21, DOI: 10.1080/13588265.2021.1903280.
  • S. Charoenphan, L. C. Bank, and M. E. Plesha, Progressive tearing failure in pultruded composite material tubes, Compos. Struct., vol. 63, no. 1, pp. 45–52, 2004. DOI: 10.1016/S0263-8223(03)00130-2.
  • Z. Hashin, and A. Rotem, A fatigue criterion for fibre-reinforced materials, J. Compos. Mater., vol. 7, no. 4, pp. 448–464, 1973. DOI: 10.1177/002199837300700404.
  • Z. Hashin, Failure criteria for unidirectional fibre composites, J. Appl. Mech., vol. 47, no. 2, pp. 329–334, 1980. DOI: 10.1115/1.3153664.
  • J. S. Lin, X. Wang, C. Q. Fang, and X. Huang, Collapse loading and energy absorption of fiber-reinforced conical shells, Compos Part B., vol. 74, pp. 178–189, 2015. DOI: 10.1016/j.compositesb.2015.01.016.
  • S. H. Xin, and H. M. Wen, A progressive damage model for fiber reinforced plastic composites subjected to impact loading, Int. J. Impact Eng., vol. 75, pp. 40–52, 2015. DOI: 10.1016/j.ijimpeng.2014.07.014.
  • I. Lapczyk, and J. A. Hurtado, Progressive damage modeling in fiber-reinforced materials, Compos. Part A. Appl. Sci. Manuf., vol. 38, no. 11, pp. 2333–2341, 2007. DOI: 10.1016/j.compositesa.2007.01.017.
  • H. El-Hage, P. K. Mallick, and N. Zamani, A numerical study on the quasi-static axial crush characteristics of square aluminum–composite hybrid tubes, Compos. Struct., vol. 73, no. 4, pp. 505–514, 2006. DOI: 10.1016/j.compstruct.2005.03.004.
  • L. Mirfendereski, M. Salimi, and S. Ziaei-Rad, Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings, Int. J. Mech. Sci., vol. 50, no. 6, pp. 1042–1057, 2008. DOI: 10.1016/j.ijmecsci.2008.02.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.