105
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Thermodynamically consistent nonlocal kernel with boundary effect compensation and its application to the coupled phase field-nonlocal integral elasticity equations for modeling of martensitic transformations

ORCID Icon & ORCID Icon
Pages 5407-5422 | Received 09 May 2021, Accepted 10 Jul 2021, Published online: 29 Jul 2021

References

  • R. D. Mindlin, and N. N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., vol. 4, no. 1, pp. 109–126, 1968. DOI: 10.1016/0020-7683(68)90036-X.
  • D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids., vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • U. Andreaus, F. dell’Isola, I. Giorgio, L. Placidi, T. Lekszycki, and N. L. Rizzi, Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity, Int. J. Eng. Sci., vol. 108, pp. 34–50, 2016. DOI: 10.1016/j.ijengsci.2016.08.003.
  • R. A. Toupin, Elastic materials with couple-stresses, Arch. Rational Mech. Anal., vol. 11, no. 1, pp. 385–414, 1962. DOI: 10.1007/BF00253945.
  • A. R. Hadjesfandiari, and G. F. Dargush, Couple stress theory for solids, Int. J. Solids Struct., vol. 48, no. 18, pp. 2496–2510, 2011. DOI: 10.1016/j.ijsolstr.2011.05.002.
  • F. Ebrahimi, and M. R. Barati, A modified nonlocal couple stress-based beam model for vibration analysis of higher-order FG nanobeams, Mech. Adv. Mater. Struct., vol. 25, no. 13, pp. 1121–1132, 2018. DOI: 10.1080/15376494.2017.1365979.
  • A. C. Eringen, and D. G. B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., vol. 10, no. 5, pp. 425–435, 1972. DOI: 10.1016/0020-7225(72)90050-X.
  • A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • F. Ebrahimi, M. R. Barati, and A. M. Zenkour, A new nonlocal elasticity theory with graded nonlocality for thermo-mechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory, Mech. Adv. Mater. Struct., vol. 25, no. 6, pp. 512–522, 2018. DOI: 10.1080/15376494.2017.1285458.
  • E. Kröner, Elasticity theory of materials with long range cohesive forces, Int. J. Solids Struct., vol. 3, no. 5, pp. 731–742, 1967. DOI: 10.1016/0020-7683(67)90049-2.
  • I. A. Kunin, On foundations of the theory of elastic media with microstructure, Int. J. Eng. Sci., vol. 22, no. 8–10, pp. 969–978, 1984. no DOI: 10.1016/0020-7225(84)90098-3.
  • J. A. Krumhansl, Some considerations of the relation between solid state physics and generalized continuum mechanics. In: E. Kröner (ed.), Mechanics of Generalized Continua, Springer, Berlin, 1968.
  • D. G. B. Edelen, and N. Laws, On the thermodynamics of systems with nonlocality, Arch. Rational Mech. Anal., vol. 43, no. 1, pp. 24–35, 1971. DOI: 10.1007/BF00251543.
  • A. C. Eringen, and B. S. Kim, Stress concentration at the tip of crack, Mech. Res. Commun., vol. 1, no. 4, pp. 233–237, 1974. DOI: 10.1016/0093-6413(74)90070-6.
  • A. C. Eringen, C. G. Speziale, and B. S. Kim, Crack-tip problem in non-local elasticity, J. Mech. Phys. Solids., vol. 25, no. 5, pp. 339–355, 1977. DOI: 10.1016/0022-5096(77)90002-3.
  • A. C. Eringen, Theory of nonlocal elasticity and some applications, Res Mech., vol. 21, pp. 313–342, 1987.
  • S. B. Altan, Uniqueness of initial-boundary value problems in nonlocal elasticity, Int. J. Solids Struct., vol. 25, no. 11, pp. 1271–1278, 1989. DOI: 10.1016/0020-7683(89)90091-7.
  • C. Polizzotto, Nonlocal elasticity and related variational principles, Int. J. Solids Struct., vol. 38, no. 42-43, pp. 7359–7380, 2001. DOI: 10.1016/S0020-7683(01)00039-7.
  • A. A. Pisano, A. Sofi, and P. Fuschi, Nonlocal integral elasticity: 2D finite element based solutions, Int. J. Solids Struct., vol. 46, no. 21, pp. 3836–3849, 2009. DOI: 10.1016/j.ijsolstr.2009.07.009.
  • A. A. Pisano, A. Sofi, and P. Fuschi, Finite element solutions for nonhomogeneous nonlocal elastic problems, Mech. Res. Commun., vol. 36, no. 7, pp. 755–761, 2009. DOI: 10.1016/j.mechrescom.2009.06.003.
  • P. Fuschi, A. A. Pisano, and D. De Domenico, Plane stress problems in nonlocal elasticity: Finite element solutions with a strain-difference-based formulation, J. Math. Anal. Appl., vol. 431, no. 2, pp. 714–736, 2015. DOI: 10.1016/j.jmaa.2015.06.005.
  • G. Pijaudier‐Cabot, and Z. P. Bažant, Nonlocal damage theory, J. Eng. Mech., vol. 113, no. 10, pp. 1512–1533, 1987. DOI: 10.1061/(ASCE)0733-9399(1987)113:10(1512).
  • G. Borino, B. Failla, and F. Parrinello, A symmetric nonlocal damage theory, Int. J. Solids Struct., vol. 40, no. 13–14, pp. 3621–3645, 2003. no DOI: 10.1016/S0020-7683(03)00144-6.
  • C. Polizzotto, Remarks on some aspects of nonlocal theories in solid mechanics, In: Proceedings of the Sixth Congress of Italian Society for Applied and Industrial Mathematics (SIMAI), Cagliari, Italy, 2002.
  • C. Polizzotto, P. Fuschi, and A. A. Pisano, A strain-difference-based nonlocal elasticity model, Int. J. Solids Struct., vol. 41, no. 9-10, pp. 2383–2401, 2004. no DOI: 10.1016/j.ijsolstr.2003.12.013.
  • C. C. Koutsoumaris, and K. G. Eptaimeros, A research into bi-Helmholtz type of nonlocal elasticity and a direct approach to Eringen’s nonlocal integral model in a finite body, Acta Mech., vol. 229, no. 9, pp. 3629–3649, 2018. DOI: 10.1007/s00707-018-2180-9.
  • H. Danesh, M. Javanbakht, and M. Mohammadi Aghdam, A comparative study of 1D nonlocal integral Timoshenko beam and 2D nonlocal integral elasticity theories for bending of nanoscale beams, Continuum Mech. Thermodyn., 2021. DOI: 10.1007/s00161-021-00976-7.
  • G. Romano, and R. Barretta, Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams, Compos. Part B Eng., vol. 114, pp. 184–188, 2017. DOI: 10.1016/j.compositesb.2017.01.008.
  • G. Romano, and R. Barretta, Nonlocal elasticity in nanobeams: the stress-driven integral model, Int. J. Eng. Sci., vol. 115, pp. 14–27, 2017. DOI: 10.1016/j.ijengsci.2017.03.002.
  • G. Romano, R. Barretta, and M. Diaco, On nonlocal integral models for elastic nano-beams, Int. J. Mech. Sci., vol. 131–132, pp. 490–499, 2017. DOI: 10.1016/j.ijmecsci.2017.07.013.
  • R. Barretta, S. A. Faghidian, and R. Luciano, Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mech. Adv. Mater. Struct., vol. 26, no. 15, pp. 1307–1315, 2019. DOI: 10.1080/15376494.2018.1432806.
  • R. Barretta, S. A. Faghidian, and F. Marotti de Sciarra, Stress-driven nonlocal integral elasticity for axisymmetric nano-plates, Int. J. Eng. Sci., vol. 136, pp. 38–52, 2019. DOI: 10.1016/j.ijengsci.2019.01.003.
  • R. Barretta, R. Luciano, F. Marotti de Sciarra, and G. Ruta, Stress-driven nonlocal integral model for Timoshenko elastic nano-beams, Eur. J. Mech. A/Solids., vol. 72, pp. 275–286, 2018. DOI: 10.1016/j.euromechsol.2018.04.012.
  • A. Apuzzo, R. Barretta, F. Fabbrocino, S. A. Faghidian, R. Luciano, and F. Marotti de Sciarra, Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity, J. Appl. Comput. Mech., vol. 5, no. 2, pp. 402–413, 2019. DOI: 10.22055/jacm.2018.26552.1338.
  • F. P. Pinnola, S. A. Faghidian, R. Barretta, and F. Marotti de Sciarra, Variationally consistent dynamics of nonlocal gradient elastic beams, Int. J. Eng. Sci., vol. 149, pp. 103220, 2020. DOI: 10.1016/j.ijengsci.2020.103220.
  • A. F. Russillo, G. Failla, G. Alotta, F. Marotti de Sciarra, and R. Barretta, On the dynamics of nano-frames, Int. J. Eng. Sci., vol. 160, pp. 103433, 2021. DOI: 10.1016/j.ijengsci.2020.103433.
  • K. Bhattacharya, Microstructure of Martensite, Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford University Press, Oxford, 2004.
  • C. M. Wayman, Introduction to the Crystallography of Martensitic Transformation, Macmillan, New York, 1964.
  • M. Mamivand, M. A. Zaeem, and H. E. Kadiri, A review on phase field modeling of martensitic phase transformation, Comput. Mater. Sci., vol. 77, pp. 304–311, 2013. DOI: 10.1016/j.commatsci.2013.04.059.
  • F. Yu, Y. Wei, Y. Ji, and L. Q. Chen, Phase field modeling of solidification microstructure evolution during welding, J. Mater. Process. Technol., vol. 255, pp. 285–293, 2018. DOI: 10.1016/j.jmatprotec.2017.12.007.
  • S. Kavousi, and M. A. Zaeem, Quantitative phase-field modeling of solute trapping in rapid solidification, Acta Mater., vol. 205, pp. 116562, 2021. DOI: 10.1016/j.actamat.2020.116562.
  • C. E. Krill, and L. Q. Chen, Computer simulation of 3-D grain growth using a phase-field model, Acta Mater., vol. 50, no. 12, pp. 3059–3075, 2002. DOI: 10.1016/S1359-6454(02)00084-8.
  • J. Mikula, S. P. Joshi, T. E. Tay, R. Ahluwalia, and S. S. Quek, A phase field model of grain boundary migration and grain rotation under elasto–plastic anisotropies, Int. J. Solids Struct., vol. 178–179, pp. 1–18, 2019. DOI: 10.1016/j.ijsolstr.2019.06.014.
  • D. Rodney, Y. L. Bouar, and A. Finel, Phase field methods and dislocations, Acta Mater., vol. 51, no. 1, pp. 17–30, 2003. DOI: 10.1016/S1359-6454(01)00379-2.
  • M. Javanbakht, and V. I. Levitas, Phase field approach to dislocation evolution at large strains: Computational aspects, Int. J. Solids Struct., vol. 82, pp. 95–110, 2016. DOI: 10.1016/j.ijsolstr.2015.10.021.
  • V. I. Levitas, D. W. Lee, and D. L. Preston, Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations, Int. J. Plast., vol. 26, no. 3, pp. 395–422, 2010. DOI: 10.1016/j.ijplas.2009.08.003.
  • A. Artemev, Y. Wang, and A. G. Khachaturyan, Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses, Acta Mater., vol. 48, no. 10, pp. 2503–2518, 2000. DOI: 10.1016/S1359-6454(00)00071-9.
  • A. Artemev, Y. Jin, and A. G. Khachaturyan, Three-dimensional phase field model of proper martensitic transformation, Acta Mater., vol. 49, no. 7, pp. 1165–1177, 2001. DOI: 10.1016/S1359-6454(01)00021-0.
  • Y. M. Jin, A. Artemev, and A. G. Khachaturyan, Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulation of ζ′2 martensite in AuCd alloys, Acta Mater., vol. 49, no. 12, pp. 2309–2320, 2001. DOI: 10.1016/S1359-6454(01)00108-2.
  • Y. H. Wen, Y. Wang, and L. Q. Chen, Effect of elastic interaction on the formation of a complex multi-domain microstructural pattern during a coherent hexagonal to orthorhombic transformation, Acta Mater., vol. 47, no. 17, pp. 4375–4386, 1999. DOI: 10.1016/S1359-6454(99)00247-5.
  • Y. U. Wang, Y. M. Jin, and A. G. Khachaturyan, The effects of free surfaces on martensite microstructures: 3D phase field microelasticity simulation study, Acta Mater., vol. 52, no. 4, pp. 1039–1050, 2004. DOI: 10.1016/j.actamat.2003.10.037.
  • V. I. Levitas, and D. L. Preston, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite ↔ martensite, Phys. Rev. B., vol. 66, no. 13, pp. 134206, 2002. DOI: 10.1103/PhysRevB.66.134206.
  • V. I. Levitas, and D. L. Preston, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis, Phys. Rev. B., vol. 66, no. 13, pp. 134207, 2002. DOI: 10.1103/PhysRevB.66.134207.
  • V. I. Levitas, D. L. Preston, and D. W. Lee, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory, Phys. Rev. B., vol. 68, no. 13, pp. 134201, 2003. DOI: 10.1103/PhysRevB.68.134201.
  • M. Javanbakht, and V. I. Levitas, Interaction between phase transformations and dislocations at the nanoscale. Part 2: Phase field simulation examples, J. Mech. Phys. Solids., vol. 82, pp. 164–185, 2015. DOI: 10.1016/j.jmps.2015.05.006.
  • M. Javanbakht, and M. Adaei, Formation of stress- and thermal-induced martensitic nanostructures in a single crystal with phase-dependent elastic properties, J. Mater. Sci., vol. 55, no. 6, pp. 2544–2563, 2020. DOI: 10.1007/s10853-019-04067-6.
  • V. A. Levin, V. I. Levitas, K. M. Zingerman, and E. I. Freiman, Phase-field simulation of stress-induced martensitic phase transformations at large strains, Int. J. Solids Struct., vol. 50, no. 19, pp. 2914–2928, 2013. DOI: 10.1016/j.ijsolstr.2013.05.003.
  • M. Javanbakht, and V. I. Levitas, Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear, Phys. Rev. B., vol. 94, no. 21, pp. 214104, 2016. DOI: 10.1103/PhysRevB.94.214104.
  • M. Mamivand, M. Asle Zaeem, and H. E. L. Kadiri, Phase field modeling of stress-induced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening, Acta Mater., vol. 64, pp. 208–219, 2014. DOI: 10.1016/j.actamat.2013.10.031.
  • C. Cissé, and M. A. Zaeem, Transformation-induced fracture toughening in CuAlBe shape memory alloys: A phase-field study, Int. J. Mech. Sci., vol. 192, pp. 106144, 2021. DOI: 10.1016/j.ijmecsci.2020.106144.
  • M. Javanbakht, and M. S. Ghaedi, Nanovoid induced martensitic growth under uniaxial stress: Effect of misfit strain, temperature and nanovoid size on PT threshold stress and nanostructure in NiAl, Comput. Mater. Sci., vol. 184, pp. 109928, 2020. DOI: 10.1016/j.commatsci.2020.109928.
  • M. Javanbakht, and M. S. Ghaedi, Nanovoid induced multivariant martensitic growth under negative pressure: Effect of misfit strain and temperature on PT threshold stress and phase evolution, Mech. Mater., vol. 151, pp. 103627, 2020. DOI: 10.1016/j.mechmat.2020.103627.
  • H. Danesh, M. Javanbakht, and S. Mirzakhani, Nonlocal integral elasticity based phase field modelling and simulations of nanoscale thermal- and stress-induced martensitic transformations using a boundary effect compensation kernel, Comput. Mater. Sci., vol. 194, pp. 110429, 2021. DOI: 10.1016/j.commatsci.2021.110429.
  • R. Abdollahi, and B. Boroomand, On using mesh-based and mesh-free methods in problems defined by Eringen’s non-local integral model: issues and remedies, Meccanica., vol. 54, no. 11–12, pp. 1801–1822, 2019. DOI: 10.1007/s11012-019-01048-6.
  • P. Fuschi, A. A. Pisano, and C. Polizzotto, Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory, Int. J. Mech. Sci., vol. 151, pp. 661–671, 2019. DOI: 10.1016/j.ijmecsci.2018.12.024.
  • B. D. Coleman, and M. E. Gurtin, Thermodynamics with internal state variables, J. Chem. Phys., vol. 47, no. 2, pp. 597–613, 1967. DOI: 10.1063/1.1711937.
  • P. Germain, Q. S. Nguyen, and P. Suquet, Continuum thermodynamics, J. Appl. Mech. Trans. ASME., vol. 50, no. 4b, pp. 1010–1020, 1983. no DOI: 10.1115/1.3167184.
  • J. Lemaitre, and J. L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.