183
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A meshfree method for free vibration analysis of ply drop-off laminated rectangular plates

, , &
Pages 5443-5459 | Received 29 May 2021, Accepted 10 Jul 2021, Published online: 21 Jul 2021

Reference

  • L. Z. Nallim and S. Oller, An analytical–numerical approach to simulate the dynamic behavior of arbitrarily laminated composite plates, Compos. Struct., vol. 85, no. 4, pp. 311–325, 2008. DOI: 10.1016/j.compstruct.2007.10.031.
  • H. Khov, W. L. Li, and R. F. Gibson, An accurate solution method for the static and dynamic deflections of orthotropic plates with general boundary conditions, Compos. Struct., vol. 90, no. 4, pp. 474–481, 2009. DOI: 10.1016/j.compstruct.2009.04.020.
  • A. Secgin and A. S. Sarıgül, Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: Algorithm and verification, J. Sound Vib., vol. 315, no. 1–2, pp. 197–211, 2008. DOI: 10.1016/j.jsv.2008.01.061.
  • Y. K. Cheung and D. Zhou, Free vibrations of rectangular unsymmetrically laminated composite plates with internal line supports, Comput. Struct., vol. 79, no. 20–21, pp. 1923–1932, 2001. DOI: 10.1016/S0045-7949(01)00096-7.
  • Y. K. Cheung and D. Zhou, Vibrations analysis of rectangular symmetrically laminated composite plates with intermediate line supports, Comput. Struct., vol. 79, no. 1, pp. 33–41, 2001. DOI: 10.1016/S0045-7949(00)00108-5.
  • L. G. Nallim and R. O. Grossi, Vibration of angle-ply symmetric laminated composite plates with edges elastically restrained, Compos. Struct., vol. 81, no. 1, pp. 80–83, 2007. DOI: 10.1016/j.compstruct.2006.07.012.
  • M. Aydogdu, A new shear deformation theory for laminated composite plates, Compos. Struct., vol. 89, no. 1, pp. 94–101, 2009. DOI: 10.1016/j.compstruct.2008.07.008.
  • J. L. Mantari, A. S. Oktem, and C. G. Soares, A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates, Int. J. Solids Struct., vol. 49, no. 1, pp. 43–53, 2012. DOI: 10.1016/j.ijsolstr.2011.09.008.
  • M. Mohammadi, E. Mohseni, and M. Moeinfar, Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory, Appl. Math. Modell., vol. 69, pp. 47–62, 2019. DOI: 10.1016/j.apm.2018.11.047.
  • S. Merdaci and H. Belghoul, High-order shear theory for static analysis of functionally graded plates with porosities, CR Mec., vol. 347, no. 3, pp. 207–217, 2019. DOI: 10.1016/j.crme.2019.01.001.
  • V. Rastogi, P.K. Urmaliya, A.K. Verma, and V. Kumhar, Free vibration of isotropic and laminated composite plate using three-dimensional finite element analysis, Mater. Today Proc., vol. 18, pp. 2823–2831, 2019.
  • J.X. Gao, Y.P. Shen, and J. Wang, Three dimensional analysis for free vibration of rectangular composite laminates with piezoelectric layers, J. Sound Vib., vol. 213, no. 2, pp. 383–390, 1998. DOI: 10.1006/jsvi.1997.1476.
  • W. Q. Chen, Y. F. Wang, J. B. Cai, and G. R. Ye, Three-dimensional analysis of cross-ply laminated cylindrical panels with weak interfaces, Int. J. Solids Struct., vol. 41, no. 9–10, pp. 2429–2446, 2004. DOI: 10.1016/j.ijsolstr.2003.12.018.
  • P. Malekzadeh, Three-dimensional free vibration analysis of thick laminated annular sector plates using a hybrid method, Compos. Struct., vol. 90, no. 4, pp. 428–437, 2009. DOI: 10.1016/j.compstruct.2009.04.015.
  • B. Tong, Y. Li, X. Zhu, and Y. Zhang, Three-dimensional vibration analysis of arbitrary angle-ply laminated cylindrical shells using differential quadrature method, Appl. Acoust., vol. 146, pp. 390–397, 2019. DOI: 10.1016/j.apacoust.2018.11.031.
  • G. Jin, Z. Su, S. Shi, T. Ye, and S. Gao, Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions, Compos. Struct., vol. 108, pp. 565–577, 2014. DOI: 10.1016/j.compstruct.2013.09.051.
  • H. Li, F. Pang, C. Gao, and R. Huo, A Jacobi-Ritz method for dynamic analysis of laminated composite shallow shells with general elastic restraints, Compos. Struct., vol. 242, p. 112091, 2020. DOI: 10.1016/j.compstruct.2020.112091.
  • J. Zhao, Q. Wang, X. Deng, K. Choe, R. Zhong, and C. Shuai, Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions, Compos. B Eng., vol. 168, pp. 106–120, 2019. DOI: 10.1016/j.compositesb.2018.12.044.
  • K. Kim, S. Kwak, P. Jang, M. Sok, S. Jon, and K. Ri, Free vibration analysis of elastically connected composite laminated double-plate system with arbitrary boundary conditions by using meshfree method, AIP Adv., vol. 11, no. 3, p. 035119, 2021. DOI: 10.1063/5.0040270.
  • Fuzhen Pang, Haichao Li, Hailong Chen, and Yanhe Shan, Free vibration analysis of combined composite laminated cylindrical and spherical shells with arbitrary boundary conditions, Mech. Adv. Mater. Struct., vol. 28, no. 2, pp. 182–199, 2021. DOI: 10.1080/15376494.2018.1553258.
  • S. Kumar, V. Ranjan, and P. Jana, Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method, Compos. Struct., vol. 197, pp. 39–53, 2018. DOI: 10.1016/j.compstruct.2018.04.085.
  • R. Talebitooti and V. Shenaei Anbardan, Haar wavelet discretization approach for frequency analysis of the functionally graded generally doubly-curved shells of revolution, Appl. Math. Modell., vol. 67, pp. 645–675, 2019. DOI: 10.1016/j.apm.2018.11.044.
  • H. T. Thai, M. Park, and D. H. Choi, A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation, Int. J. Mech. Sci., vol. 73, pp. 40–52, 2013. DOI: 10.1016/j.ijmecsci.2013.03.017.
  • G. Jin, T. Ye, and Z. Su, Structural Vibration: A Uniform Accurate Solution for Laminated Beams, Plates and Shells with General Boundary Conditions. Science Press, Beijing, 2015.
  • D. Shi, T. Liu, Q. Wang, and Q. Lan, Vibration analysis of arbitrary straight-sided quadrilateral plates using a simple first-order shear deformation theory, Results Phys., vol. 11, pp. 201–211, 2018. DOI: 10.1016/j.rinp.2018.09.001.
  • B. Qin, R. Zhong, Q. Wu, T. Wang, and Q. Wang, A unified formulation for free vibration of laminated plate through Jacobi-Ritz method, Thin-Walled Struct., vol. 144, p. 106354, 2019. DOI: 10.1016/j.tws.2019.106354.
  • T. Ye, G. Jin, and Y. Zhang, Vibrations of composite laminated doubly-curved shells of revolution with elastic restraints including shear deformation, rotary inertia and initial curvature, Compos. Struct., vol. 133, pp. 202–225, 2015. DOI: 10.1016/j.compstruct.2015.07.051.
  • H. Li, F. Pang, X. Wang, Y. Du, and H. Chen, Free vibration analysis for composite laminated doubly-curved shells of revolution by a semi analytical method, Compos. Struct., vol. 201, pp. 86–111, 2018. DOI: 10.1016/j.compstruct.2018.05.143.
  • H. Li, F. Pang, H. Chen, and Y. Du, Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method, Compos. B Eng., vol. 164, pp. 249–264, 2019. DOI: 10.1016/j.compositesb.2018.11.046.
  • H. Li, F. Pang, X. Miao, S. Gao, and F. Liu, A semi analytical method for free vibration analysis of composite laminated cylindrical and spherical shells with complex boundary conditions, Thin-Walled Struct., vol. 136, pp. 200–220, 2019. DOI: 10.1016/j.tws.2018.12.009.
  • E.J. Barbero, Finite Element Analysis of Composite Materials with Abaqus, CRC Press, London, 2013.
  • B. Varughese and A. Mukherjee, A ply drop-off element for analysis of tapered laminated composites, Compos. Struct., vol. 39, no. 1–2, pp. 123–144, 1997. DOI: 10.1016/S0263-8223(97)00132-3.
  • K. He, R. Ganesan, and S. V. Hosa, Modified shear-lag model for analysis of a composite laminate with drop-off plies, Compos. Sci. Technol., vol. 63, no. 10, pp. 1453–1462, 2003. DOI: 10.1016/S0266-3538(03)00166-0.
  • G. R. Liu and Y.T. Gu. An Introduction to Meshfree Methods and Their Programming, Springer, Dordrecht, 2005.
  • B. Chinnaboon, S. Chucheepsakul, and J.T. Katsikadelis, A BEM-based domain meshless method for the analysis of Mindlin plates with general boundary conditions, Comput. Methods Appl. Mech. Eng., vol. 200, no. 13–16, pp. 1379–1388, 2011. DOI: 10.1016/j.cma.2010.12.014.
  • J. Sorić and T. Jarak, Mixed meshless formulation for analysis of shell-like structures, Comput. Methods Appl. Mech. Eng., vol. 199, no. 17–20, pp. 1153–1164, 2010. DOI: 10.1016/j.cma.2009.12.007.
  • M.R. Moghaddam, G.H.B., Three-dimensional free vibrations analysis of functionally graded rectangular plates by the meshless local PetrovGalerkin (MLPG) method, Appl. Math. Comput., vol. 304, pp. 153–163, 2017.
  • E. Shivanian, Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation, Eng. Anal. Boundary Elem., vol. 50, pp. 249–257, 2015. DOI: 10.1016/j.enganabound.2014.08.014.
  • P.H. Wen, Meshless local Petrov–Galerkin (MLPG) method for wave propagation in 3D poroelastic solids, Eng. Anal. Boundary Elem., vol. 34, no. 4, pp. 315–323, 2010. DOI: 10.1016/j.enganabound.2009.10.013.
  • G.R. Liu, X. Zhao, K.Y. Dai, Z.H. Zhong, G.Y. Li, and X. Han, Static and free vibration analysis of laminated composite plates using the conforming radial point interpolation method, Compos. Sci. Technol., vol. 68, no. 2, pp. 354–366, 2008. DOI: 10.1016/j.compscitech.2007.07.014.
  • S. Kwak, K. Kim, Y. Ri, G. Jong, and H. Ri, Natural frequency calculation of open laminated conical and cylindrical shells by a meshless method, Eur. Phys. J. Plus, vol. 135, no. 5, pp. 1–33, 2020. DOI: 10.1140/epjp/s13360-020-00438-0.
  • B. Bediz, A spectral-Tchebychev solution technique for determining vibrational behavior of thick plates having arbitrary geometry, J. Sound Vib., vol. 432, pp. 272–289, 2018. DOI: 10.1016/j.jsv.2018.06.040.
  • D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods, Theory and Applications, SIAM-CBMS, Philedelphia, PA, 1977.
  • D. Zhou, F. Au, Y. Cheung, and S. Lo, Three-dimensional vibration analysis of circular and annular plates via the Chebyshev Ritz method, Int. J. Solid Struct., vol. 40, no. 12, pp. 3089–3105, 2003. DOI: 10.1016/S0020-7683(03)00114-8.
  • S. Filiz, B. Bediz, L.A. Romero, and O. Burak Ozdoganlar, A spectral-Tchebychev solution for three-dimensional vibrations of parailelepipeds under mixed boundary conditions, J. Appl. Mech., vol. 79, no. 5, p. 051012, 2012. DOI: 10.1115/1.4006256.
  • S. Filiz, B. Bediz, L.A. Romero, and O. Burak Ozdoganlar, Three dimensional dynamics of pretwisted beams: A spectral-Tchebychev solution, J. Sound Vib., vol. 333, no. 10, pp. 2823–2839, 2014. DOI: 10.1016/j.jsv.2014.01.010.
  • B. Bediz, L.A. Romero, and O. Burak Ozdoganlar, Three dimensional dynamics of rotating structures under mixed boundary conditions, J. Sound Vib., vol. 358, pp. 176–191, 2015. DOI: 10.1016/j.jsv.2015.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.