367
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Fiber reinforcement characteristics of anisotropic dielectric elastomers: A constitutive modeling development

ORCID Icon & ORCID Icon
Pages 5542-5556 | Received 01 Dec 2020, Accepted 17 Jul 2021, Published online: 02 Aug 2021

References

  • Y. Bar-Cohen, Electroactive polymers: Current capabilities and challenges, in Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), vol. 4695, pp. 1–8, 2002.
  • J. Su, J.S. Harrison, T.L.S. Clair, Y. Bar-Cohen, and S. Leary, Electrostrictive grafr elastomers and applications, MRS Online Proceedings Library Archive, vol. 600, 1999.
  • J.W. Fox, Electromechanical characterization of the static and dynamic response of dielectric elastomer membranes, Virginia Tech, 2007. https://vtechworks.lib.vt.edu/handle/10919/34909
  • Y. Bar-Cohen, Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential, and challenges, vol. 5, SPIE Press, Bellingham, WA, 2004.
  • X. Zhao, and Z. Suo, Method to analyze programmable deformation of dielectric elastomer layers, Appl. Phys. Lett., vol. 93, no. 25, p. 251902, 2008. DOI: 10.1063/1.3054159.
  • G. Kofod and P. Somrner-Larsen, Some aspects of large strain actuation in dielectric elastomers, in 2005 12th International Symposium on Electrets, pp. 208–211, 2005.
  • A. Vinogradov, J. Su, C. Jenkins, and Y. Bar-Cohen, State-of-the-art developments in the field of electroactive polymers, MRS Online Proceedings Library Archive, vol. 889, 2005.
  • M. Wissler and E. Mazza, Electromechanical coupling in dielectric elastomer actuators, Sens. Actuators, A, vol. 138, no. 2, pp. 384–393, 2007. DOI: 10.1016/j.sna.2007.05.029.
  • A. Ahmadi and M. Asgari, Nonlinear coupled electro-mechanical behavior of a novel anisotropic fiber-reinforced dielectric elastomer, Int. J. Non. Linear Mech., vol. 119, p. 103364, 2020. DOI: 10.1016/j.ijnonlinmec.2019.103364.
  • X. Ji, et al., Stretchable composite monolayer electrodes for low voltage dielectric elastomer actuators, Sens. Actuators, B, vol. 261, pp. 135–143, 2018. DOI: 10.1016/j.snb.2018.01.145.
  • K.B. Subramani, E. Cakmak, R.J. Spontak, and T.K. Ghosh , Enhanced electroactive response of unidirectional elastomeric composites with high-dielectric-constant fibers, Adv. Mater., vol. 26, no. 18, pp. 2949–2953, 2014. DOI: 10.1002/adma.201305821.
  • L. He, J. Lou, J. Du, and H. Wu, Voltage-induced torsion of a fiber-reinforced tubular dielectric elastomer actuator, Composites Science and Technology, vol. C, no. 140, pp. 106–115, 2017.
  • M. Bozlar, et al., Dielectric elastomer actuators with elastomeric electrodes, Appl. Phys. Lett., vol. 101, no. 9, p. 091907, 2012. DOI: 10.1063/1.4748114.
  • N.H. Chuc, et al., A dielectric elastomer actuator with self-sensing capability, in Electroactive Polymer Actuators and Devices (EAPAD) 2008, vol. 6927, p. 69270V, 2008.
  • R.D. Kornbluh, et al., Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures, in Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, vol. 4698, pp. 254–271, 2002.
  • I.A. Anderson, T.A. Gisby, T.G. McKay, B.M. O’Brien, and E.P. Calius, Multi-functional dielectric elastomer artificial muscles for soft and smart machines, J. Appl. Phys., vol. 112, no. 4, p. 041101, 2012. DOI: 10.1063/1.4740023.
  • L.A. Toth and A.A. Goldenberg, Control system design for a dielectric elastomer actuator: The sensory subsystem, in Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), vol. 4695, pp. 323–334, 2002.
  • E. Hansy-Staudigl, M. Krommer, and A. Humer, A complete direct approach to nonlinear modeling of dielectric elastomer plates, Acta Mech., vol. 230, no. 11, pp. 3923–3943, 2019. DOI: 10.1007/s00707-019-02529-1.
  • R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%, Science, vol. 287, no. 5454, pp. 836–839, 2000. DOI: 10.1126/science.287.5454.836.
  • K. Jung, et al., Development of enhanced synthetic elastomer for energy-efficient polymer actuators, Smart Mater. Struct., vol. 16, no. 2, pp. S288–S294, 2007. DOI: 10.1088/0964-1726/16/2/S13.
  • B. Chen, et al., Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators, J. Polym. Sci. Part B Polym. Phys., vol. 52, no. 16, pp. 1055–1060, 2014. DOI: 10.1002/polb.23529.
  • G. Gallone, F. Galantini, and F. Carpi, Perspectives for new dielectric elastomers with improved electromechanical actuation performance: Composites versus blends, Polym. Int., vol. 59, no. 3, pp. 400–406, 2010. DOI: 10.1002/pi.2765.
  • R. Shankar, T.K. Ghosh, and R.J. Spontak, Dielectric elastomers as next-generation polymeric actuators, Soft Matter, vol. 3, no. 9, pp. 1116–1129, 2007. DOI: 10.1039/b705737g.
  • D. Eder-Goy, Y. Zhao, and B.-X. Xu, Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading, Acta Mech., vol. 228, no. 12, pp. 4293–4307, 2017. DOI: 10.1007/s00707-017-1930-4.
  • E.-F.M. Henke, K.E. Wilson, and I.A. Anderson, Entirely soft dielectric elastomer robots, in Electroactive Polymer Actuators and Devices (EAPAD) 2017, vol. 10163, p. 101631N, 2017.
  • R. Pelrine, et al., Dielectric elastomer artificial muscle actuators: Toward biomimetic motion, in Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), vol. 4695, pp. 126–138, 2002.
  • M. Rosenthal, N. Bonwit, C. Duncheon, and J. Heim, Applications of dielectric elastomer EPAM sensors, in Electroactive Polymer Actuators and Devices (EAPAD) 2007, vol. 6524, p. 65241F, 2007.
  • B.M. O’Brien, E.P. Calius, T. Inamura, S.Q. Xie, and I.A. Anderson, Dielectric elastomer switches for smart artificial muscles, Appl. Phys. A, vol. 100, no. 2, pp. 385–389, 2010. DOI: 10.1007/s00339-010-5857-z.
  • R.D. Kornbluh, et al., Dielectric elastomers: Stretching the capabilities of energy harvesting, MRS Bull., vol. 37, no. 3, pp. 246–253, 2012. DOI: 10.1557/mrs.2012.41.
  • T. Kim, Y. Liu, and J. Leng, Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators, J. Appl. Polym. Sci., vol. 135, no. 21, p. 46215, 2018. DOI: 10.1002/app.46215.
  • L. He, J. Lou, J. Du, and J. Wang, Finite bending of a dielectric elastomer actuator and pre-stretch effects, Int. J. Mech. Sci., vol. 122, pp. 120–128, 2017. DOI: 10.1016/j.ijmecsci.2017.01.019.
  • W. Oates, P. Miles, W. Gao, J. Clark, S. Mashayekhi, and M.Y. Hussaini, Rate dependent constitutive behavior of dielectric elastomers and applications in legged robotics, in Electroactive Polymer Actuators and Devices (EAPAD) 2017, vol. 10163, p. 1016316, 2017.
  • E. Staudigl, M. Krommer, and Y. Vetyukov, Finite deformations of thin plates made of dielectric elastomers: Modeling, numerics, and stability, J. Intell. Mater. Syst. Struct., vol. 29, no. 17, pp. 3495–3513, 2017. DOI: 10.1177/1045389X17733052.
  • S. Klinkel, S. Zwecker, and R. Müller, A solid shell finite element formulation for dielectric elastomers, J. Appl. Mech., vol. 80, no. 2, p. 21026, 2013. DOI: 10.1115/1.4007435.
  • Z. Suo, Theory of dielectric elastomers, Acta Mech. Solida Sin., vol. 23, no. 6, pp. 549–578, 2010. DOI: 10.1016/S0894-9166(11)60004-9.
  • J.W. Fox and N.C. Goulbourne, On the dynamic electromechanical loading of dielectric elastomer membranes, J. Mech. Phys. Solids, vol. 56, no. 8, pp. 2669–2686, 2008. DOI: 10.1016/j.jmps.2008.03.007.
  • V. Tomer, C.A. Randall, G. Polizos, J. Kostelnick, and E. Manias, High-and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites, J. Appl. Phys., vol. 103, no. 3, p. 034115, 2008. DOI: 10.1063/1.2838481.
  • M.R. Kashani, S. Javadi, and N. Gharavi, Dielectric properties of silicone rubber-titanium dioxide composites prepared by dielectrophoretic assembly of filler particles, Smart Mater. Struct., vol. 19, no. 3, p. 035019, 2010. DOI: 10.1088/0964-1726/19/3/035019.
  • V.Y. Reshetnyak, I.P. Pinkevych, T.J. Sluckin, A.M. Urbas, and D.R. Evans, Effective medium theory for anisotropic media with plasmonic core-shell nanoparticle inclusions, Eur. Phys. J. Plus, vol. 133, no. 9, p. 373, 2018. DOI: 10.1140/epjp/i2018-12226-4.
  • F. Sohrabi and S.M. Hamidi, Fabrication methods of plasmonic and magnetoplasmonic crystals: A review, Eur. Phys. J. Plus, vol. 132, no. 1, pp. 1–21, 2017. DOI: 10.1140/epjp/i2017-11294-2.
  • D. Corbett and M. Warner, Anisotropic electrostatic actuation, J. Phys. D Appl. Phys., vol. 42, no. 11, p. 115505, 2009. DOI: 10.1088/0022-3727/42/11/115505.
  • H. Yong, X. He, and Y. Zhou, Electromechanical instability in anisotropic dielectric elastomers, Int. J. Eng. Sci., vol. 50, no. 1, pp. 144–150, 2012. DOI: 10.1016/j.ijengsci.2011.08.007.
  • A.K. Sharma and M.M. Joglekar, A numerical framework for modeling anisotropic dielectric elastomers, Comput. Methods Appl. Mech. Eng., vol. 344, pp. 402–420, 2019. DOI: 10.1016/j.cma.2018.10.005.
  • R. Bustamante, Transversely isotropic non-linear electro-active elastomers, Acta Mech., vol. 206, no. 3–4, pp. 237–259, 2009. DOI: 10.1007/s00707-008-0092-9.
  • M. Hossain, Modelling the curing process in particle-filled electro-active polymers with a dispersion anisotropy, Continuum Mech. Thermodyn., vol. 32, no. 2, pp. 351–367, 2020. DOI: 10.1007/s00161-019-00747-5.
  • E. Allahyari and M. Asgari, Nonlinear dynamic analysis of anisotropic fiber-reinforced dielectric elastomers: A mathematical approach, J. Intell. Mater. Syst. Struct., p. 1045389X21995879, 2021. DOI: 10.1177/1045389X21995879
  • E. Allahyari and M. Asgari, Effect of fibers configuration on nonlinear vibration of anisotropic dielectric elastomer membrane, Int. J. Appl. Mech., vol. 12, no. 10, p. 2050114, 2020. DOI: 10.1142/S1758825120501148.
  • G.T. Mase and G.E. Mase, Continuum Mechanics for Engineers, CRC Press, 1999. http://www.academia.edu/15548859/Continuum_Mechanics_for_Engineers_Mase_3rd_Edition
  • J.N. Reddy, Principles of Continuum Mechanics: A Study of Conservation Principles with Applications, Cambridge University Press, Cambridge, 2010.
  • A.J.M. Spencer, Continuum Theory of the Mechanics of Fibre-Reinforced Composites, vol. 282, Springer, 1984. https://www.springer.com/gp/book/9783211818428
  • A. Dorfmann and R.W. Ogden, Nonlinear electroelasticity, Acta Mech., vol. 174, no. 3–4, pp. 167–183, 2005. DOI: 10.1007/s00707-004-0202-2.
  • G.A. Holzapfel, Nonlinear solid mechanics: A continuum approach for engineering science, Meccanica, vol. 37, no. 4/5, pp. 489–490, 2002. DOI: 10.1023/A:1020843529530.
  • A. Dorfmann and R.W. Ogden, Nonlinear electroelastic deformations, J. Elast., vol. 82, no. 2, pp. 99–127, 2006. DOI: 10.1007/s10659-005-9028-y.
  • J. Schröder, P. Neff, and D. Balzani, A variational approach for materially stable anisotropic hyperelasticity, Int. J. Solids Struct., vol. 42, no. 15, pp. 4352–4371, 2005. DOI: 10.1016/j.ijsolstr.2004.11.021.
  • J. Mehta, Y. Chandra, and R.P. Tewari, The use of dielectric elastomer actuators for prosthetic, orthotic and bio-robotic applications, Procedia Comput. Sci., vol. 133, pp. 569–575, 2018. DOI: 10.1016/j.procs.2018.07.085.
  • H. Stoyanov, M. Kollosche, S. Risse, R. Waché, and G. Kofod, Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles, Adv. Mater., vol. 25, no. 4, pp. 578–583, 2013. DOI: 10.1002/adma.201202728.
  • S. Son, Nonlinear electromechanical deformation of isotropic and anisotropic electro-elastic materials, Virginia Tech, 2011. https://vtechworks.lib.vt.edu/handle/10919/28587

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.