368
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Study of equivalent mechanical properties on pyramidal lattice materials

, &
Pages 5637-5650 | Received 02 Apr 2021, Accepted 26 Jul 2021, Published online: 08 Aug 2021

References

  • S. Markkula, S. Storck, D. Burns, and M. Zupan, Compressive behavior of pyramidal, tetrahedral, and strut-reinforced tetrahedral ABS and electroplated cellular solids, Adv. Eng. Mater., vol. 11, no. 1–2, pp. 56–62, 2009. DOI: 10.1002/adem.200800284.
  • Y.P. Wei et al., Numerical simulation and experimental validation on fabrication of nickel-based superalloy Kagome lattice sandwich structures, China Foundry, vol. 17, no. 1, pp. 21–28, 2020. DOI: 10.1007/s41230-020-9100-z.
  • J.B. Berger, H.N.G. Wadley, and R.M. McMeeking, Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness, Nature, vol. 543, no. 7646, pp. 533–537, 2017. DOI: 10.1038/nature21075.
  • X.F. Cao et al., Compression experiment and numerical evaluation on mechanical responses of the lattice structures with stochastic geometric defects originated from additive-manufacturing, Compos. Part B Eng., vol. 194, pp. 108030, 2020. DOI: 10.1016/j.compositesb.2020.108030.
  • C. Neff, N. Hopkinson, and N.B. Crane, Experimental and analytical investigation of mechanical behavior of laser-sintered diamond-lattice structures, Addit. Manuf., vol. 22, pp. 807–816, 2018. DOI: 10.1016/j.addma.2018.07.005.
  • G. Qi, B. Ji, and L. Ma, Mechanical response of pyramidal lattice truss core sandwich structures by additive manufacturing, Mech. Adv. Mater. Struct., vol. 26, no. 15, pp. 1298–1306, 2019. DOI: 10.1080/15376494.2018.1432805.
  • Z.H. Li, Y.F. Nie, B. Liu, Z.Z. Kuai, M. Zhao, and F. Liu, Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting, Mater. Des., vol. 192, pp. 108709, 2020. DOI: 10.1016/j.matdes.2020.108709.
  • H.L. Zhou, M. Zhao, Z.B. Ma, D.Z. Zhang, and G. Fu, Sheet and network based functionally graded lattice structures manufactured by selective laser melting: Design, mechanical properties, and simulation, Int. J. Mech. Sci., vol. 175, pp. 105480, 2020. DOI: 10.1016/j.ijmecsci.2020.105480.
  • L. Zhang et al., Bending behavior of lightweight C/SiC pyramidal lattice core sandwich panels, Int. J. Mech. Sci., vol. 171, pp. 105409, 2020. DOI: 10.1016/j.ijmecsci.2019.105409.
  • V.S. Deshpande and N.A. Fleck, Collapse of truss core sandwich beams in 3-point bending, Int. J. Solids Struct., vol. 38, no. 36–37, pp. 6275–6305, 2001. DOI: 10.1016/S0020-7683(01)00103-2.
  • K. Wei, Q.D. Yang, B. Ling, H.Q. Xie, Z.L. Qu, and D.N. Fang, Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting, Extreme Mech. Lett., vol. 23, pp. 41–48, 2018. DOI: 10.1016/j.eml.2018.07.001.
  • J. Smardzewski and K.W. Wojciechowski, Response of wood-based sandwich beams with three-dimensional lattice core, Compos. Struct., vol. 216, pp. 340–349, 2019. DOI: 10.1016/j.compstruct.2019.03.009.
  • H.L. Fan, F.H. Meng, and W. Yang, Sandwich panels with Kagome lattice cores reinforced by carbon fibers, Compos. Struct., vol. 81, no. 4, pp. 533–539, 2007. DOI: 10.1016/j.compstruct.2006.09.011.
  • S.H. Li, W.C. Jiang, and S.T. Tu, Life prediction model of creep-rupture and creep-buckling of a pyramidal lattice truss panel structure by analytical and finite element study, Int. J. Mech. Sci., vol. 141, pp. 502–511, 2018. DOI: 10.1016/j.ijmecsci.2018.04.026.
  • C.X. Peng, P. Tran, H. Nguyen-Xuan, and A.J.M. Ferreira, Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach, Compos. Struct., vol. 235, pp. 111821, 2020. DOI: 10.1016/j.compstruct.2019.111821.
  • N. Jin, F.C. Wang, Y.W. Wang, B.W. Zhang, H.W. Cheng, and H.M. Zhang, Effect of structural parameters on mechanical properties of Pyramidal Kagome lattice material under impact loading, Int. J. Impact Eng., vol. 132, pp. 103313, 2019. DOI: 10.1016/j.ijimpeng.2019.06.002.
  • Z.J. Zhang, Q.C. Zhang, X.B. Shi, W.J. Zhang, and F. Jin, Effects of adhesive parameters on out-of-plane compression and compression fatigue response of adhesively bonded sandwiches with pyramidal core, Compos. Struct., vol. 206, pp. 131–139, 2018. DOI: 10.1016/j.compstruct.2018.08.004.
  • E.C. Clough, J. Ensberg, Z.C. Eckel, C.J. Ro, and T.A. Schaedler, Mechanical performance of hollow tetrahedral truss cores, Int. J. Solids Struct., vol. 91, pp. 115–126, 2016. DOI: 10.1016/j.ijsolstr.2016.04.006.
  • C.L. Li et al., Architecture design of periodic truss-lattice cells for additive manufacturing, Addit. Manuf., vol. 34, pp. 101172, 2020. DOI: 10.1016/j.addma.2020.101172.
  • M.F. Guo, H. Yang, and L. Ma, Design and characterization of 3D AuxHex lattice structures, Int. J. Mech. Sci., vol. 181, pp. 105700, 2020. DOI: 10.1016/j.ijmecsci.2020.105700.
  • S.Q. Xu, J.H. Shen, S.W. Zhou, X.D. Huang, and Y.M. Xie, Design of lattice structures with controlled anisotropy, Mater. Des., vol. 93, pp. 443–447, 2016. DOI: 10.1016/j.matdes.2016.01.007.
  • C.X. Yang, P. Xu, S.C. Xie, and S.G. Yao, Mechanical performances of four lattice materials guided by topology optimisation, Scripta Mater., vol. 178, pp. 339–345, 2020. DOI: 10.1016/j.scriptamat.2019.11.060.
  • V.S. Deshpande, N.A. Fleck, and M.F. Ashby, Effective properties of the octet-truss lattice material, J. Mech. Phys. Solids, vol. 49, no. 8, pp. 1747–1769, 2001. DOI: 10.1016/S0022-5096(01)00010-2.
  • J.C. Wallach and L.J. Gibson, Mechanical behavior of a three-dimensional truss material, Int. J. Solids Struct., vol. 38, no. 40–41, pp. 7181–7196, 2001. DOI: 10.1016/S0020-7683(00)00400-5.
  • A. Karamoozian, C.A. Tan, and L. Wang, Homogenized modeling and micromechanics analysis of thin-walled lattice plate structures for brake discs, J. Sandwich Struct. Mater., vol. 22, no. 2, pp. 423–460, 2020. DOI: 10.1177/1099636218757670.
  • G.U. Patil and K.H. Matlack, Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization, J. Acoust. Soc. Am., vol. 145, no. 3, pp. 1259–1269, 2019. DOI: 10.1121/1.5091690.
  • S. Arabnejad and D. Pasini, Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods, Int. J. Mech. Sci., vol. 77, pp. 249–262, 2013. DOI: 10.1016/j.ijmecsci.2013.10.003.
  • Q. Zhang, W.C. Jiang, and Y.T. Zhang, Effect of geometrical parameters on the effective elastic modulus for an X-type lattice truss panel structure, Sci. Eng. Compos. Mater., vol. 25, no. 6, pp. 1135–1144, 2018. DOI: 10.1515/secm-2017-0257.
  • K. Refai, M. Montemurro, C. Brugger, and N. Saintier, Determination of the effective elastic properties of titanium lattice structures, Mech. Adv. Mater. Struct., vol. 27, no. 23, pp. 1966–1982, 2020. DOI: 10.1080/15376494.2018.1536816.
  • X.Y. Liu and N.G. Liang, Effective elastic moduli of triangular lattice material with defects, J. Mech. Phys. Solids, vol. 60, no. 10, pp. 1722–1739, 2012. DOI: 10.1016/j.jmps.2012.06.006.
  • Q. Zhang, W.C. Jiang, B. Zhao, Y. Luo, and S.T. Tu, A study of the effective elastic modulus of a lattice truss panel structure by experimental and theoretical analysis, Compos. Struct., vol. 165, pp. 130–137, 2017. DOI: 10.1016/j.compstruct.2017.01.012.
  • J. Niu, H.L. Choo, W. Sun, and S.H. Mok, Analytical solution and experimental study of effective young’s modulus of selective laser melting-fabricated lattice structure with triangular unit cells, J. Manuf. Sci. E-T ASME, vol. 140, pp. 091008, 2018.
  • K.P. Qiu, R.Y. Wang, Z. Wang, and W.H. Zhang, Effective elastic properties of flexible chiral honeycomb cores including geometrically nonlinear effects, Meccanica, vol. 53, no. 15, pp. 3661–3672, 2018. DOI: 10.1007/s11012-018-0911-6.
  • J. Niu, H.L. Choo, W. Sun, and S.H. Mok, Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells, Int. J. Mech. Mater. Des., vol. 14, no. 3, pp. 443–460, 2018. DOI: 10.1007/s10999-017-9384-3.
  • Q. Zhang, W.C. Jiang, Y.T. Zhang, and S.T. Tu, Compression, shear and bending performance of X-type lattice truss panel structure by theoretical method and simulation, Int. J. Steel Struct., vol. 20, no. 1, pp. 259–271, 2020. DOI: 10.1007/s13296-019-00286-4.
  • J. Souza, A. Großmann, and C. Mittelstedt, Micromechanical analysis of the effective properties of lattice structures in additive manufacturing, Addit. Manuf., vol. 23, pp. 53–69, 2018. DOI: 10.1016/j.addma.2018.07.007.
  • V.H. Carneiro, On the elastic properties of three-dimensional honeycomb lattices, Compos. Commun., vol. 17, pp. 14–17, 2020. DOI: 10.1016/j.coco.2019.11.005.
  • T. Mukhopadhyay and S. Adhikari, Effective in-plane elastic moduli of quasi-random spatially irregular hexagonal lattices, Int. J. Eng. Sci., vol. 119, pp. 142–179, 2017. DOI: 10.1016/j.ijengsci.2017.06.004.
  • M. Abdelhamid and A. Czekanski, Impact of the lattice angle on the effective properties of the Octet-Truss lattice structure, J. Eng. Mater-T ASME, vol. 140, pp. 041010, 2018.
  • T. Mukhopadhyay, S. Naskar, and S. Adhikari, Anisotropy tailoring in geometrically isotropic multi-material lattices, Extreme Mech. Lett., vol. 40, pp. 100934, 2020. DOI: 10.1016/j.eml.2020.100934.
  • A. Singh, T. Mukhopadhyay, S. Adhikari, and B. Bhattacharya, Voltage-dependent modulation of elastic moduli in lattice metamaterials: Emergence of a programmable state-transition capability, Int. J. Solids Struct., vol. 208–209, pp. 31–48, 2021. DOI: 10.1016/j.ijsolstr.2020.10.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.