136
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A model for tensile modulus of halloysite-nanotube-based samples assuming the distribution and networking of both nanoparticles and interphase zone after mechanical percolation

&
Pages 5704-5713 | Received 25 May 2021, Accepted 26 Jul 2021, Published online: 09 Aug 2021

References

  • K. Prashantha, H. Schmitt, M.-F. Lacrampe, and P. Krawczak, Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites, Compos. Sci. Technol., vol. 71, no. 16, pp. 1859–1866, 2011. DOI: 10.1016/j.compscitech.2011.08.019.
  • R. Rozza and F. Ferrante, Computational study of water adsorption on halloysite nanotube in different pH environments, Appl. Clay Sci., vol. 190, pp. 105589, 2020. DOI: 10.1016/j.clay.2020.105589.
  • S. Hamedi and M. Koosha, Designing a pH-responsive drug delivery system for the release of black-carrot anthocyanins loaded in halloysite nanotubes for cancer treatment, Appl. Clay Sci., vol. 197, pp. 105770, 2020. DOI: 10.1016/j.clay.2020.105770.
  • R. Bouaziz, K. Prashantha, and F. Roger, Thermomechanical modeling of halloysite nanotube-filled shape memory polymer nanocomposites, Mech. Adv. Mater. Struct., vol. 26, no. 14, pp. 1209–1217, 2019. DOI: 10.1080/15376494.2018.1432793.
  • B. Lecouvet, C. Bailly, and B. Nysten, Measurement of the elastic modulus of halloysite nanotubes using atomic force microscopy, Nat. Miner. Nanotubes: Properties Appl., pp. 251, 2015.
  • K. L. Goh, R. De Silva, and P. Pasbakhsh, Mechanics of halloysite nanotubes, Nat. Miner. Nanotubes: Properties Appl., pp. 261–282, 2015.
  • A. Mohebali, M. Abdouss, and F. A. Taromi, Fabrication of biocompatible antibacterial nanowafers based on HNT/PVA nanocomposites loaded with minocycline for burn wound dressing, Mater. Sci. Eng. C Mater. Biol. Appl., vol. 110, pp. 110685, 2020. DOI: 10.1016/j.msec.2020.110685.
  • E. Rozhina et al., Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide, Appl. Clay Sci.., vol. 205, pp. 106041, 2021. DOI: 10.1016/j.clay.2021.106041.
  • G. I. Fakhrullina, F. S. Akhatova, Y. M. Lvov, and R. F. Fakhrullin, Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study, Environ. Sci: Nano., vol. 2, no. 1, pp. 54–59, 2015. DOI: 10.1039/C4EN00135D.
  • A. Zubkiewicz, A. Szymczyk, S. Paszkiewicz, R. Jędrzejewski, E. Piesowicz, and J. Siemiński, Ethylene vinyl acetate copolymer/halloysite nanotubes nanocomposites with enhanced mechanical and thermal properties, J. Appl. Polym. Sci., vol. 137, no. 38, pp. 49135, 2020. DOI: 10.1002/app.49135.
  • L. Lisuzzo, G. Cavallaro, S. Milioto, and G. Lazzara, Effects of halloysite content on the thermo-mechanical performances of composite bioplastics, Appl. Clay Sci., vol. 185, pp. 105416, 2020. DOI: 10.1016/j.clay.2019.105416.
  • L. Lisuzzo, M. R. Caruso, G. Cavallaro, S. Milioto, and G. Lazzara, Hydroxypropyl cellulose films filled with halloysite nanotubes/wax hybrid microspheres, Ind. Eng. Chem. Res., vol. 60, no. 4, pp. 1656–1665, 2021. DOI: 10.1021/acs.iecr.0c05148.
  • D. Marset et al., Injection-molded parts of partially biobased polyamide 610 and biobased halloysite nanotubes, Polymers, vol. 12, pp. 1503, 2020. DOI: 10.3390/polym12071503.
  • Y. E. Bulbul, T. Uzunoglu, N. Dilsiz, E. Yildirim, and H. Ates, Investigation of nanomechanical and morphological properties of silane-modified halloysite clay nanotubes reinforced polycaprolactone bio-composite nanofibers by atomic force microscopy, Polym. Test., vol. 92, pp. 106877, 2020. DOI: 10.1016/j.polymertesting.2020.106877.
  • A. Amirkiai et al., Microstructural design for enhanced mechanical and shape memory performance of polyurethane nanocomposites: Role of hybrid nanofillers of montmorillonite and halloysite nanotube, Appl. Clay Sci., vol. 198, pp. 105816, 2020. DOI: 10.1016/j.clay.2020.105816.
  • A. Sheidaei et al., 3-D microstructure reconstruction of polymer nano-composite using FIB–SEM and statistical correlation function, Compos. Sci. Technol., vol. 80, pp. 47–54, 2013. DOI: 10.1016/j.compscitech.2013.03.001.
  • Y. Tang et al., Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites, Compos. Part A: Appl. Sci. Manuf., vol. 42, no. 4, pp. 345–354, 2011. DOI: 10.1016/j.compositesa.2010.12.003.
  • N.-y. Ning, Q.-j. Yin, F. Luo, Q. Zhang, R. Du, and Q. Fu, Crystallization behavior and mechanical properties of polypropylene/halloysite composites, Polymer, vol. 48, no. 25, pp. 7374–7384, 2007. DOI: 10.1016/j.polymer.2007.10.005.
  • K. Goh, M. Makaremi, P. Pasbakhsh, R. De Silva, and V. Zivkovic, Direct measurement of the elasticity and fracture properties of electrospun polyacrylonitrile/halloysite fibrous mesh in water, Polym. Test., vol. 72, pp. 11–23, 2018. DOI: 10.1016/j.polymertesting.2018.09.026.
  • K. Prashantha, B. Lecouvet, M. Sclavons, M. F. Lacrampe, and P. Krawczak, Poly (lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment, J. Appl. Polym. Sci., vol. 128, pp. 1895–1903, 2013.
  • S. Ganguly, P. Bhawal, A. Choudhury, S. Mondal, P. Das, and N. C. Das, Preparation and properties of halloysite nanotubes/poly (ethylene methyl acrylate)-based nanocomposites by variation of mixing methods, Polym. Plast. Technol. Eng., vol. 57, no. 10, pp. 997–1014, 2018. DOI: 10.1080/03602559.2017.1370106.
  • R. T. De Silva, P. Pasbakhsh, K.-L. Goh, and L. Mishnaevsky, Jr., 3-D computational model of poly (lactic acid)/halloysite nanocomposites: Predicting elastic properties and stress analysis, Polymer., vol. 55, no. 24, pp. 6418–6425, 2014. DOI: 10.1016/j.polymer.2014.09.057.
  • M. Al-Bahrani, A. Bouaissi, and A. Cree, Mechanical and electrical behaviors of self-sensing nanocomposite-based MWCNTs material when subjected to twist shear load, Mech. Adv. Mater. Struct., vol. 28, no. 14, pp. 1410–1488, 2021. DOI: 10.1080/15376494.2019.1681038.
  • F. Zhu, C. Park, and GJin Yun, An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage, Mech. Adv. Mater. Struct., vol. 28, no. 3, pp. 295–307, 2021. DOI: 10.1080/15376494.2018.1562135.
  • P. Wang et al., Dynamic behavior of carbon nanofiber-modified epoxy with the effect of polydopamine-coated interface, Mech. Adv. Mater. Struct., vol. 27, no. 21, pp. 1827–1839, 2020. DOI: 10.1080/15376494.2018.1529843.
  • M. Mahmoodi, Y. Rajabi, and B. Khodaiepour, Electro-thermo-mechanical responses of laminated smart nanocomposite moderately thick plates containing carbon nanotube–A multi-scale modeling, Mech. Mater., vol. 141, pp. 103247, 2020. DOI: 10.1016/j.mechmat.2019.103247.
  • S. Boutaleb et al., Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites, Int. J. Solids Struct., vol. 46, no. 7–8, pp. 1716–1726, 2009. DOI: 10.1016/j.ijsolstr.2008.12.011.
  • M. K. Ravari, M. Kadkhodaei, M. Badrossamay, and R. Rezaei, Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling, Int. J. Mech. Sci., vol. 88, pp. 154–161, 2014. DOI: 10.1016/j.ijmecsci.2014.08.009.
  • M. Hassanzadeh-Aghdam, R. Ansari, and M. Mahmoodi, Micromechanical analysis of the elastic response of glass-epoxy hybrid composites containing silica nanoparticles, Mech. Adv. Mater. Struct., vol. 26, no. 23, pp. 1920–1934, 2019. DOI: 10.1080/15376494.2018.1455930.
  • R. Wei and W. Gao, Viscoelastic behavior of carbon nanotube-enriched epoxy matrix hybrid composites reinforced with unidirectional graphite fibers, Mech. Adv. Mater. Struct., vol. 28, no. 15, pp. 1516–1588, 2021. DOI: 10.1080/15376494.2019.1695027.
  • F. A. Ghasemi, M. N. Niyaraki, I. Ghasemi, and S. Daneshpayeh, Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology, Mech. Adv. Mater. Struct., vol. 28, no. 10, pp. 981–989, 2021. DOI: 10.1080/15376494.2019.1614702.
  • J. Shojaeiarani, M. Hosseini-Farid, and D. Bajwa, Modeling and experimental verification of nonlinear behavior of cellulose nanocrystals reinforced poly (lactic acid) composites, Mech. Mater., vol. 135, pp. 77–87, 2019. DOI: 10.1016/j.mechmat.2019.05.003.
  • Y. Zare and H. Garmabi, Attempts to simulate the modulus of polymer/carbon nanotube nanocomposites and future trends, Polym. Rev., vol. 54, no. 3, pp. 377–400, 2014. DOI: 10.1080/15583724.2013.870574.
  • M. Mirnezhad, R. Ansari, and S. Falahatgar, Quantum effects on the mechanical properties of fine-scale CNTs: An approach based on DFT and molecular mechanics model, Eur. Phys. J. Plus, vol. 135, no. 11, pp. 1–71, 2020. DOI: 10.1140/epjp/s13360-020-00878-8.
  • R. Razavi, Y. Zare, and K. Y. Rhee, A model for tensile strength of polymer/carbon nanotubes nanocomposites assuming the percolation of interphase regions, Colloids Surf. A., vol. 538, pp. 148–154, 2018. DOI: 10.1016/j.colsurfa.2017.10.063.
  • Y. Zare , Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer-filler interphase, J. Colloid Interface Sci., vol. 467, pp. 165–169, 2016. DOI: 10.1016/j.jcis.2016.01.022.
  • Y. Zare, A simple technique for determination of interphase properties in polymer nanocomposites reinforced with spherical nanoparticles, Polymer, vol. 72, pp. 93–97, 2015. DOI: 10.1016/j.polymer.2015.06.060.
  • M. H. Al-Saleh, H. K. Al-Anid, and Y. A. Hussain, CNT/ABS nanocomposites by solution processing: Proper dispersion and selective localization for low percolation threshold, Compos. Part A: Appl. Sci. Manuf., vol. 46, pp. 53–59, 2013. DOI: 10.1016/j.compositesa.2012.10.010.
  • S. Maiti, R. Bera, S. K. Karan, S. Paria, A. De, and B. B. Khatua, PVC bead assisted selective dispersion of MWCNT for designing efficient electromagnetic interference shielding PVC/MWCNT nanocomposite with very low percolation threshold, Compos. Part B: Eng., vol. 167, pp. 377–386, 2019. DOI: 10.1016/j.compositesb.2019.03.012.
  • Y. Zare and K. Y. Rhee, Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases, J. Colloid Interface Sci., vol. 506, pp. 283–290, 2017. DOI: 10.1016/j.jcis.2017.07.050.
  • Y. Zare, K. Y. Rhee, and S.-J. Park, A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin-Tsai model, Results Phys., vol. 14, pp. 102406, 2019. DOI: 10.1016/j.rinp.2019.102406.
  • Y. Zare and K. Y. Rhee, Effects of interphase regions and filler networks on the viscosity of PLA/PEO/carbon nanotubes biosensor, Polym. Compos., vol. 40, no. 10, pp. 4135–4141, 2019. DOI: 10.1002/pc.25274.
  • H. Shin, S. Yang, J. Choi, S. Chang, and M. Cho, Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: A multiscale approach, Chem. Phys. Lett., vol. 635, pp. 80–85, 2015. DOI: 10.1016/j.cplett.2015.06.054.
  • R. Qiao and L. C. Brinson, Simulation of interphase percolation and gradients in polymer nanocomposites, Compos. Sci. Technol., vol. 69, no. 3–4, pp. 491–499, 2009. DOI: 10.1016/j.compscitech.2008.11.022.
  • Y. Zare and K. Y. Rhee, Modeling of interphase strength between polymer host and clay nanoparticles in nanocomposites by clay possessions and interfacial/interphase terms, Appl. Clay Sci., vol. 192, pp. 105644, 2020. DOI: 10.1016/j.clay.2020.105644.
  • Y. Zare and K. Y. Rhee, Simulation of tensile strength for halloysite nanotubes/polymer composites, Appl. Clay Sci., vol. 205, pp. 106055, 2021. DOI: 10.1016/j.clay.2021.106055.
  • J. Kolařík, Three-dimensional models for predicting the modulus and yield strength of polymer blends, foams, and particulate composites, Polym. Compos., vol. 18, pp. 433–441, 1997.
  • S. Chen, M. Sarafbidabad, Y. Zare, and K. Y. Rhee, Estimation of the tensile modulus of polymer carbon nanotube nanocomposites containing filler networks and interphase regions by development of the Kolarik model, RSC Adv., vol. 8, no. 42, pp. 23825–23834, 2018. DOI: 10.1039/C8RA01910J.
  • Y. Zare and K. Y. Rhee, Prediction of tensile modulus in polymer nanocomposites containing carbon nanotubes (CNT) above percolation threshold by modification of conventional model, Curr. Appl. Phys., vol. 17, no. 6, pp. 873–879, 2017. DOI: 10.1016/j.cap.2017.03.010.
  • Y. Zare and K. Y. Rhee, Tensile modulus prediction of carbon nanotubes-reinforced nanocomposites by a combined model for dispersion and networking of nanoparticles, J. Mater. Res. Technol., 2019.
  • Y. Zare and K. Y. Rhee, A multistep methodology for calculation of the tensile modulus in polymer/carbon nanotube nanocomposites above the percolation threshold based on the modified rule of mixtures, RSC Adv., vol. 8, no. 54, pp. 30986–30993, 2018. DOI: 10.1039/C8RA04992K.
  • A. Lazzeri and V. T. Phuong, Dependence of the Pukánszky’s interaction parameter B on the interface shear strength (IFSS) of nanofiller-and short fiber-reinforced polymer composites, Compos. Sci. Technol., vol. 93, pp. 106–113, 2014. DOI: 10.1016/j.compscitech.2014.01.002.
  • Y. Zare, Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly–Tyson theory, Mech. Mater., vol. 85, pp. 1–6, 2015. DOI: 10.1016/j.mechmat.2015.02.002.
  • C. Feng and L. Jiang, Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites, Compos. Part A: Appl. Sci. Manuf., vol. 47, pp. 143–149, 2013. DOI: 10.1016/j.compositesa.2012.12.008.
  • Y. Zare, K. Y. Rhee, and S.-J. Park, Modeling the roles of carbon nanotubes and interphase dimensions in the conductivity of nanocomposites, Results Phys., vol. 15, pp. 102562, 2019. DOI: 10.1016/j.rinp.2019.102562.
  • P. Pasbakhsh, R. T. De Silva, V. Vahedi, and H. Ismail, The role of halloysite's surface area and aspect ratio on tensile properties of ethylene propylene diene monomer nanocomposites, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., vol. 8, pp. 1363–1366, 2014.
  • Y. Zare, A. Daraei, M. Vatani, and P. Aghasafari, An analysis of interfacial adhesion in nanocomposites from recycled polymers, Comput. Mater. Sci., vol. 81, pp. 612–616, 2014. DOI: 10.1016/j.commatsci.2013.08.041.
  • Y. Zare, K. Y. Rhee, and S.-J. Park, A modeling methodology to investigate the effect of interfacial adhesion on the yield strength of MMT reinforced nanocomposites, J. Ind. Eng. Chem., vol. 69, pp. 331–337, 2019. DOI: 10.1016/j.jiec.2018.09.039.
  • Y. Zare, A model for tensile strength of polymer/clay nanocomposites assuming complete and incomplete interfacial adhesion between the polymer matrix and nanoparticles by the average normal stress in clay platelets, RSC Adv., vol. 6, no. 63, pp. 57969–57976, 2016. DOI: 10.1039/C6RA04132A.
  • J. Amraei, J. E. Jam, B. Arab, and R. D. Firouz-Abadi, Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites, Polym. Compos., vol. 40, No. S2, pp. E1219–E1234, 2019. DOI: 10.1002/pc.24950.
  • S. A. Tharu and M. B. Panchal, Effect of interphase on elastic and shear moduli of metal matrix nanocomposites, Eur. Phys. J. Plus, vol. 135, no. 1, pp. 121, 2020. DOI: 10.1140/epjp/s13360-020-00227-9.
  • M. Loos and I. Manas-Zloczower, Micromechanical models for carbon nanotube and cellulose nanowhisker reinforced composites, Polym. Eng. Sci., vol. 53, no. 4, pp. 882–887, 2013. DOI: 10.1002/pen.23313.
  • X. L. Ji, K. J. Jiao, W. Jiang, and B. Z. Jiang, Tensile modulus of polymer nanocomposites, Polym. Eng. Sci., vol. 42, no. 5, pp. 983–993, 2002. DOI: 10.1002/pen.11007.
  • N. Ouali, J. Cavaillé, and J. Perez, Elastic, viscoelastic and plastic behavior of multiphase polymer blends, Plast. Rubber Compos. Process. Appl. (UK), vol. 16, pp. 55–60, 1991.
  • Y. Zare and K. Y. Rhee, Simulation of Young’s modulus for clay-reinforced nanocomposites assuming mechanical percolation, clay-interphase networks and interfacial linkage, J. Mater. Res. Technol., vol. 9, no. 6, pp. 12473–12483, 2020. DOI: 10.1016/j.jmrt.2020.08.097.
  • B. Lecouvet, M. Sclavons, S. Bourbigot, and C. Bailly, Towards scalable production of polyamide 12/halloysite nanocomposites via water-assisted extrusion: Mechanical modeling, thermal and fire properties, Polym. Adv. Technol., vol. 25, no. 2, pp. 137–151, 2014. DOI: 10.1002/pat.3215.
  • Y. He et al., Modified natural halloysite/potato starch composite films, Carbohydr. Polym., vol. 87, no. 4, pp. 2706–2711, 2012. DOI: 10.1016/j.carbpol.2011.11.057.
  • D. Pedrazzoli, A. Pegoretti, R. Thomann, J. Kristof, and J. Karger-Kocsis, Toughening linear low-density polyethylene with halloysite nanotubes, Polym. Compos., vol. 36, no. 5, pp. 869–883, 2015. DOI: 10.1002/pc.23006.
  • K. S. Lee and Y. W. Chang, Thermal, mechanical, and rheological properties of poly (ε-caprolactone)/halloysite nanotube nanocomposites, J. Appl. Polym. Sci., vol. 128, no. 5, pp. 2807–2816, 2013. DOI: 10.1002/app.38457.
  • B. Lecouvet, J. Horion, C. D’haese, C. Bailly, and B. Nysten, Elastic modulus of halloysite nanotubes, Nanotechnology, vol. 24, no. 10, pp. 105704, 2013. DOI: 10.1088/0957-4484/24/10/105704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.