219
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The use of contravariant tensor invariants to model damage in anisotropic soft tissues

, ORCID Icon &
Pages 5714-5725 | Received 28 Apr 2021, Accepted 28 Jul 2021, Published online: 24 Aug 2021

References

  • G. A. Holzapfel, G. Sommer, T. C. Gasser, and P. Regitnig, Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Am. J. Physiol. Heart Circ. Physiol., vol. 289, no. 5, pp. H2048–H2058, 2005. DOI: 10.1152/ajpheart.00934.2004.
  • G. A. Holzapfel, and R. W. Ogden, A damage model for collagen fibres with an application to collagenous soft tissues, Proc. Math. Phys. Eng. Sci., vol. 476, no. 2236, pp. 20190821 2020. DOI: 10.1098/rspa.2019.0821.
  • M. Jadidi, S. Sherifova, G. Sommer, A. Kamenskiy, and G. A. Holzapfel, Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages, Acta Biomater., vol. 121, pp. 461–474, 2021. DOI: 10.1016/j.actbio.2020.11.046.
  • C. Rogers, D. Y. Tseng, J. C. Squire, and E. R. Edelman, Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury, Circ. Res., vol. 84, no. 4, pp. 378–383, 1999. DOI: 10.1161/01.res.84.4.378.
  • R. He, L. G. Zhao, V. V. Silberschmidt, Y. Liu, and F. Vogt, Patient-specific modelling of stent overlap: Lumen gain, tissue damage and in-stent restenosis, J. Mech. Behav. Biomed., vol. 109, pp. 103836, 2020. DOI: 10.1016/j.jmbbm.2020.103836.
  • S. De, J. Rosen, A. Dagan, B. Hannaford, P. Swanson, and M. Sinanan, Assessment of tissue damage due to mechanical stresses, Int. J. Robot Res., vol. 26, no. 11–12, pp. 1159–1171, 2007. DOI: 10.1177/0278364907082847.
  • E. F. Morgan, G. U. Unnikrisnan, and A. I. Hussein, Bone mechanical properties in healthy and diseased states, Annu. Rev. Biomed. Eng., vol. 20, pp. 119–143, 2018. DOI: 10.1146/annurev-bioeng-062117-121139.
  • M. R. Allen, C. L. Newman, N. Chen, M. Granke, et al., Changes in skeletal collagen cross-links and matrix hydration in high- and low-turnover chronic kidney disease , Osteoporos. Int., vol. 26, no. 3, pp. 977–985, 2015. DOI: 10.1007/s00198-014-2978-9.
  • V. Egorov, and A. P. Sarvazyan, Mechanical imaging of the breast, IEEE Trans Med Imaging, vol. 27, no. 9, pp. 1275–1287, 2008. DOI: 10.1109/TMI.2008.922192.
  • N. Choudhury, O. Bouchot, L. Rouleau, D. Tremblay, et al., Local mechanical and structural properties of healthy and diseased human ascending aorta tissue, Cardiovasc. Pathol., vol. 18, no. 2, pp. 83–91, 2009. DOI: 10.1016/j.carpath.2008.01.001.
  • A. P. Ebrahimi, Mechanical properties of normal and diseased cerebrovascular system, J. Vasc. Interv. Neurol., vol. 2, no. 2, pp. 155–162, 2009.
  • A. V. Kamenskiy, I. I. Pipinos, Y. A. Dzenis, C. S. Lomneth, et al., Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries, Acta Biomater., vol. 10, no. 3, pp. 1301–1313, 2014. DOI: 10.1016/j.actbio.2013.12.027.
  • K. D. Costa, J. W. Holmes, and A. D. McCulloch, Modelling cardiac mechanical properties in three dimensions, Philos. Trans. Royal Soc. A, vol. 359, no. 1783, pp. 1233–1250, 2001. DOI: 10.1098/rsta.2001.0828.
  • A. C. Akyildiz, L. Speelman, and F. J. H. Gijsen, Mechanical properties of human atherosclerotic intima tissue, J. Biomech., vol. 47, no. 4, pp. 773–783, 2014. DOI: 10.1016/j.jbiomech.2014.01.019.
  • I. Cambré, D. Gaublomme, A. Burssens, P. Jacques, et al., Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis, Nat. Commun., vol. 9, no. 1, pp. 1–14, 2018.
  • J. L. Schmidt, D. J. Tweten, A. A. Badachhape, A. J. Reiter, et al., Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography, J. Mech. Behav. Biomed. Mater., vol. 79, pp. 30–37, 2018. DOI: 10.1016/j.jmbbm.2017.11.045.
  • J. Nagels, F. J. Landser, L. Van der Linden, J. Clement, and K. P. Van de Woestijne, Mechanical properties of lungs and chest wall during spontaneous breathing, J. Appl. Physiol. Respir. Environ. Exerc. Physiol., vol. 49, no. 3, pp. 408–416, 1980. DOI: 10.1152/jappl.1980.49.3.408.
  • J. A. Zimberlin, J. J. McManus, and A. J. Crosby, Cavitation rheology of the vitreous: mechanical properties of biological tissue, Soft Matter ., vol. 6, no. 15, pp. 3632–3635, 2010. DOI: 10.1039/b925407b.
  • J. L. Zitnay, Y. Li, Z. Qin, B. H. San, et al., Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides, Nat. Commun., vol. 8, no. 1, pp. 1–12, 2017.
  • G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, Measuring the mechanical properties of living cells using atomic force microscopy, J. Vis. Exp., vol. 76, pp. e50497, 2013.
  • M. A. Miner, Cumulative damage in fatigue, J.Appl.Mech., vol. 12, no. 3, pp. A159–A164, 1945. DOI: 10.1115/1.4009458.
  • A. Fatemi, and L. Yang, Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials, Int. J. Fatigue, vol. 20, no. 1, pp. 9–34, 1998. DOI: 10.1016/S0142-1123(97)00081-9.
  • L. M. Kachanov, Introduction to Continuum Damage Mechanics, Vol. 10. Springer Science & Business Media Dordrecht, Netherlands, 1986.
  • J. L. Chaboche, and P. M. Lesne, A non-linear continuous fatigue damage model, Fatigue Fract. Eng. Mater. Struct., vol. 11, no. 1, pp. 1–17, 1988. DOI: 10.1111/j.1460-2695.1988.tb01216.x.
  • Z. Zhan, W. Hu, B. Li, Y. Zhang, Q. Meng, and Z. Guan, Continuum damage mechanics combined with the extended finite element method for the total life prediction of a metallic component, Int. J. Mech. Sci., vol. 124-125, pp. 48–58, 2017. DOI: 10.1016/j.ijmecsci.2017.03.002.
  • H. Jiang, Y. Ren, and B. Gao, Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness, Thin Wall. Struct., vol. 119, pp. 531–543, 2017. DOI: 10.1016/j.tws.2017.07.004.
  • M. Cuomo, Continuum damage model for strain gradient materials with applications to 1d examples, Continuum Mech. Thermodyn., vol. 31, no. 4, pp. 969–987, 2019. DOI: 10.1007/s00161-018-0698-7.
  • T. Abdullah, and K. Kirane, Continuum damage modeling of dynamic crack velocity, branching, and energy dissipation in brittle materials, Int. J. Fract., vol. 229, no. 1, pp. 15–37, 2021. DOI: 10.1007/s10704-021-00537-8.
  • X. N. Do, A. Ibrahimbegovic, and D. Brancherie, Dynamics framework for 2d anisotropic continuum-discrete damage model for progressive localized failure of massive structures, Comput. Struct., vol. 183, pp. 14–26, 2017. DOI: 10.1016/j.compstruc.2017.01.011.
  • R. Rahbar-Rastegar, E. V. Dave, and J. S. Daniel, Fatigue and thermal cracking analysis of asphalt mixtures using continuum-damage and cohesive-zone models, J. Transp. Eng, Part B: Pavements, vol. 144, no. 4, pp. 04018040, 2018. DOI: 10.1061/JPEODX.0000066.
  • S. Ma, and H. Yuan, A continuum damage model for multi-axial low cycle fatigue of porous sintered metals based on the critical plane concept, Mech. Mater., vol. 104, pp. 13–25, 2017. DOI: 10.1016/j.mechmat.2016.09.013.
  • B. van Dongen, A. van Oostrum, and D. Zarouchas, A blended continuum damage and fracture mechanics method for progressive damage analysis of composite structures using xfem, Compos. Struct., vol. 184, pp. 512–522, 2018. DOI: 10.1016/j.compstruct.2017.10.007.
  • V. Dattoma, S. Giancane, R. Nobile, and F. W. Panella, Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model, Int. J. Fatigue, vol. 28, no. 2, pp. 89–95, 2006. DOI: 10.1016/j.ijfatigue.2005.05.001.
  • J. Lemaitre, and J. L. Chaboche, Mechanics of Solid Materials. Cambridge University Press, New York, 1990.
  • R. W. Ogden, and D. G. Roxburgh, A pseudo–elastic model for the Mullins effect in filled rubber, Proc. R Soc. Lond. A, vol. 455, no. 1988, pp. 2861–2877, 1999. DOI: 10.1098/rspa.1999.0431.
  • C. Miehe, Discontinuous and continuous damage evolution in ogden-type large-strain elastic materials, Eur. J. Mech. A Solids, vol. 14, no. 5, pp. 697–720, 1995.
  • K. Y. Volokh, Cavitation instability as a trigger of aneurysm rupture, Biomech. Model. Mechanobiol., vol. 14, no. 5, pp. 1071–1079, 2015. DOI: 10.1007/s10237-015-0655-3.
  • K. Y. Volokh, Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening, J. Biomech., vol. 41, no. 2, pp. 447–453, 2008. DOI: 10.1016/j.jbiomech.2007.08.001.
  • E. Maher, A. Creane, C. Lally, and D. J. Kelly, An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue, J. Mech. Behav. Biomed. Mater., vol. 12, pp. 9–19, 2012. DOI: 10.1016/j.jmbbm.2012.03.001.
  • J. C. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects, Comput. Methods Appl. Mech Eng., vol. 60, no. 2, pp. 153–173, 1987. [Database] DOI: 10.1016/0045-7825(87)90107-1.
  • B. Fereidoonnezhad, R. Naghdabadi, and G. A. Holzapfel, Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping, J. Mech. Behav. Biomed. Mater., vol. 61, pp. 600–616, 2016. DOI: 10.1016/j.jmbbm.2016.03.026.
  • B. Fereidoonnezhad, R. Naghdabadi, S. Sohrabpour, and G. A. Holzapfel, A mechanobiological model for damage-induced growth in arterial tissue with application to in-stent restenosis, J. Mech. Phys. Solids., vol. 101, pp. 311–327, 2017. DOI: 10.1016/j.jmps.2017.01.016.
  • B. M. Chu, and P. J. Blatz, Cumulative microdamage model to describe the hysteresis of living tissue, Ann. Biomed. Eng., vol. 1, no. 2, pp. 204–211, 1972. DOI: 10.1007/BF02584207.
  • A. N. Natali, P. G. Pavan, E. L. Carniel, and C. Dorow, A transversally isotropic elasto-damage constitutive model for the periodontal ligament, Comput Methods Biomech Biomed Engin., vol. 6, no. 5–6, pp. 329–336, 2003. DOI: 10.1080/10255840310001639840.
  • H. Liao, and S. M. Belkoff, A failure model for ligaments, J. Biomech., vol. 32, no. 2, pp. 183–188, 1999. DOI: 10.1016/S0021-9290(98)00169-9.
  • R. De Vita, and W. S. Slaughter, A constitutive law for the failure behavior of medial collateral ligaments, Biomech. Model. Mechanobiol., vol. 6, no. 3, pp. 189–197, 2007. DOI: 10.1007/s10237-006-0054-x.
  • Z. Guo, and RDe Vita, Probabilistic constitutive law for damage in ligaments, Med. Eng. Phys., vol. 31, no. 9, pp. 1104–1109, 2009. DOI: 10.1016/j.medengphy.2009.06.011.
  • T. Schmidt, D. Balzani, and G. A. Holzapfel, Statistical approach for a continuum description of damage evolution in soft collagenous tissues, Comput. Methods Appl. Mech. Eng., vol. 278, pp. 41–61, 2014. DOI: 10.1016/j.cma.2014.04.011.
  • T. C. Gasser, An irreversible constitutive model for fibrous soft biological tissue: a 3-d microfiber approach with demonstrative application to abdominal aortic aneurysms, Acta Biomater., vol. 7, no. 6, pp. 2457–2466, 2011.
  • R. J. Nims, K. M. Durney, A. D. Cigan, A. Dusséaux, C. T. Hung, and G. A. Ateshian, Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering, Interface Focus, vol. 6, no. 1, pp. 20150063, 2016. DOI: 10.1098/rsfs.2015.0063.
  • O. Gültekin, H. Dal, and G. A. Holzapfel, Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: a rate-dependent anisotropic crack phase-field model, Comput. Methods Appl. Mech. Eng., vol. 331, pp. 23–52, 2018. DOI: 10.1016/j.cma.2017.11.008.
  • P. Movahed, W. Kreider, A. D. Maxwell, S. B. Hutchens, and J. B. Freund, Cavitation-induced damage of soft materials by focused ultrasound bursts: a fracture-based bubble dynamics model, J. Acoust. Soc. Am., vol. 140, no. 2, pp. 1374–1386, 2016. DOI: 10.1121/1.4961364.
  • A. Raina, and C. Miehe, A phase-field model for fracture in biological tissues, Biomech. Model. Mechanobiol., vol. 15, no. 3, pp. 479–496, 2016. DOI: 10.1007/s10237-015-0702-0.
  • V. B. Pandey, I. V. Singh, B. K. Mishra, S. Ahmad, A. V. Rao, and V. Kumar, Creep crack simulations using continuum damage mechanics and extended finite element method, Int. J. Damage Mech., vol. 28, no. 1, pp. 3–34, 2019. DOI: 10.1177/1056789517737593.
  • P. Hu, Q. Meng, W. Hu, F. Shen, Z. Zhan, and L. Sun, A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy, Corros. Sci., vol. 113, pp. 78–90, 2016. DOI: 10.1016/j.corsci.2016.10.006.
  • S. Blanco, C. A. Polindara, and J. M. Goicolea, A regularised continuum damage model based on the mesoscopic scale for soft tissue, Int. J. Solids Struct., vol. 58, pp. 20–33, 2015. DOI: 10.1016/j.ijsolstr.2014.12.013.
  • W. Hou, P. X. Liu, and M. Zheng, Modeling of connective tissue damage for blunt dissection of brain tumor in neurosurgery simulation, Comput. Biol. Med., vol. 120, pp. 103696, 2020. DOI: 10.1016/j.compbiomed.2020.103696.
  • M. Mengoni, and J. P. Ponthot, A generic anisotropic continuum damage model integration scheme adaptable to both ductile damage and biological damage-like situations, Int. J. Plast., vol. 66, pp. 46–70, 2015. DOI: 10.1016/j.ijplas.2014.04.005.
  • B. N. Safa, M. H. Santare, and D. M. Elliott, A reactive inelasticity theoretical framework for modeling viscoelasticity, plastic deformation, and damage in fibrous soft tissue, J. Biomech. Eng., vol. 141, no. 2, pp. 021005––02100512, 2019.
  • J. Llobet, P. Maimí, Y. Essa, and F. M. de la Escalera, A continuum damage model for composite laminates: part III-fatigue, Mech. Mater., vol. 153, pp. 103659, 2021. DOI: 10.1016/j.mechmat.2020.103659.
  • K. Linka, M. Hillgärtner, and M. Itskov, Fatigue of soft fibrous tissues: multi-scale mechanics and constitutive modeling, Acta Biomater., vol. 71, pp. 398–410, 2018. DOI: 10.1016/j.actbio.2018.03.010.
  • F. Maceri, M. Marino, and G. Vairo, A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement, J. Biomech., vol. 43, no. 2, pp. 355–363, 2010. DOI: 10.1016/j.jbiomech.2009.07.040.
  • M. Ghasemi, D. R. Nolan, and C. Lally, An investigation into the role of different constituents in damage accumulation in arterial tissue and constitutive model development, Biomech. Model. Mechanobiol., vol. 17, no. 6, pp. 1757–1769, 2018. DOI: 10.1007/s10237-018-1054-3.
  • Y. He, D. Zuo, K. Hackl, H. Yang, S. J. Mousavi, and S. Avril, Gradient-enhanced continuum models of healing in damaged soft tissues, Biomech. Model. Mechanobiol., vol. 18, no. 5, pp. 1443–1460, 2019. DOI: 10.1007/s10237-019-01155-z.
  • P. Karki, R. Li, and A. Bhasin, Quantifying overall damage and healing behaviour of asphalt materials using continuum damage approach, Int. J. Pavement Eng., vol. 16, no. 4, pp. 350–362, 2015. DOI: 10.1080/10298436.2014.942993.
  • D. Zuo, S. Avril, H. Yang, S. J. Mousavi, K. Hackl, and Y. He, Three-dimensional numerical simulation of soft-tissue wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced damage mechanics, J. R. Soc. Interface, vol. 17, no. 162, pp. 20190708, 2020. DOI: 10.1098/rsif.2019.0708.
  • L. Placidi, A variational approach for a nonlinear 1-dimensional second gradient continuum damage model, Continuum Mech. Thermodyn., vol. 27, no. 4–5, pp. 623–638, 2015. DOI: 10.1007/s00161-014-0338-9.
  • C. Martin, and W. Sun, Fatigue damage of collagenous tissues: experiment, modeling and simulation studies, J. Long. Term Eff. Med. Implants, vol. 25, no. 1–2, pp. 55–73, 2015. DOI: 10.1615/jlongtermeffmedimplants.2015011749.
  • T. Waffenschmidt, C. Polindara, A. Menzel, and S. Blanco, A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials, Comput. Methods Appl. Mech. Eng., vol. 268, pp. 801–842, 2014. DOI: 10.1016/j.cma.2013.10.013.
  • L. Sprave, and A. Menzel, A large strain gradient-enhanced ductile damage model: Finite element formulation, experiment and parameter identification, Acta Mech., vol. 231, no. 12, pp. 5159–5192, 2020. DOI: 10.1007/s00707-020-02786-5.
  • X. Gao, Q. Zhu, and W. Gu, An anisotropic multiphysics damage model with application to annulus fibrosus, J. Biomech., vol. 61, pp. 88–93, 2017. DOI: 10.1016/j.jbiomech.2017.07.007.
  • J. M. Vassoler, L. Stainier, and E. A. Fancello, A variational framework for fiber-reinforced viscoelastic soft tissues including damage, Int. J. Numer. Methods Eng., vol. 108, no. 8, pp. 865–884, 2016. DOI: 10.1002/nme.5236.
  • E. Peña, On the microstructural modeling of vascular tissues, In: Tavares J., Natal Jorge R. (eds) Computational and Experimental Biomedical Sciences: Methods and Applications. Lecture Notes in Computational Vision and Biomechanics, Springer, Cham; vol 21, pp. 19–47, 2015. DOI:10.1007/978-3-319-15799-3_2.
  • M. K. Rausch, G. E. Karniadakis, and J. D. Humphrey, Modeling soft tissue damage and failure using a combined particle/continuum approach, Biomech. Model. Mechanobiol., vol. 16, no. 1, pp. 249–261, 2017. DOI: 10.1007/s10237-016-0814-1.
  • N. Qi, et al., Investigation of the optimal collagen fibre orientation in human iliac arteries, J. Mech. Behav. Biomed. Mater., vol. 52, pp. 108–119, 2015. DOI: 10.1016/j.jmbbm.2015.06.011.
  • R. T. Gaul, D. R. Nolan, and C. Lally, Collagen fibre characterisation in arterial tissue under load using sals, J. Mech. Behav. Biomed. Mater., vol. 75, pp. 359–368, 2017. DOI: 10.1016/j.jmbbm.2017.07.036.
  • A. J. Schriefl, G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. Holzapfel, Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries, J. R. Soc. Interface, vol. 9, no. 71, pp. 1275–1286, 2012. DOI: 10.1098/rsif.2011.0727.
  • M. Kapeliotis, et al., Collagen fibre orientation in human bridging veins, Biomech. Model. Mechanobiol., vol. 19, no. 6, pp. 2455–2489, 2020. DOI: 10.1007/s10237-020-01349-w.
  • W. Li, Damage models for soft tissues: a survey, J. Med. Biol. Eng., vol. 36, no. 3, pp. 285–307, 2016. DOI: 10.1007/s40846-016-0132-1.
  • H. L. Cox, The elasticity and strength of paper and other fibrous materials, Br. J. Appl. Phys., vol. 3, no. 3, pp. 72–79, 1952. DOI: 10.1088/0508-3443/3/3/302.
  • S. M. Mithieux, and A. S. Weiss, Elastin, Adv. Protein Chem., vol. 70, pp. 437–461, 2005.
  • G. A. Di Lullo, S. M. Sweeney, J. Körkkö, L. Ala-Kokko, and J. D. San Antonio, Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type i collagen, J. Biol. Chem., vol. 277, no. 6, pp. 4223–4231, 2002. DOI: 10.1074/jbc.M110709200.
  • L. P. Lebedev, M. J. Cloud, and V. A. Eremeyev, Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey, 2010.
  • E. C. Young, Vector and Tensor Analysis. CRC Press, Taylor and Francis group, Florida, USA, 1992.
  • A. Basak, A. Rajagopal, U. Basappa, and M. Hossain, The use of contravariant tensors to model anisotropic soft tissues, Int. J. Appl. Mech, vol. 13, No. 03, pp. 2150039, 2021.
  • L. M. Kachanov, Time of the rupture process under creep conditions, Izy Akad, Nank SSR Otd Tech Nauk, vol. 8, pp. 26–31, 1958.
  • G. P. Riley, Gene expression and matrix turnover in overused and damaged tendons, Scand. J. Med. Sci. Sports, vol. 15, no. 4, pp. 241–251, 2005. DOI: 10.1111/j.1600-0838.2005.00456.x.
  • J. M. Caves, W. Cui, J. Wen, V. A. Kumar, C. A. Haller, and E. L. Chaikof, Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair, Biomaterials, vol. 32, no. 23, pp. 5371–5379, 2011. DOI: 10.1016/j.biomaterials.2011.04.009.
  • Z. Peng, X. Wang, and Z. Wu, A bundle-based shear-lag model for tensile failure prediction of unidirectional fiber-reinforced polymer composites, Mater. Des., vol. 196, pp. 109103, 2020. DOI: 10.1016/j.matdes.2020.109103.
  • J. Wu, H. Yuan, and L. Li, Effect of viscoelasticity on interfacial stress transfer mechanism in the biocomposites: a theoretical study of viscoelastic shear lag model, Compos. B. Eng., vol. 164, pp. 297–308, 2019. DOI: 10.1016/j.compositesb.2018.11.086.
  • S. E. Szczesny, and D. M. Elliott, Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon, Acta Biomater., vol. 10, no. 6, pp. 2582–2590, 2014. DOI: 10.1016/j.actbio.2014.01.032.
  • S. E. Szczesny, J. L. Caplan, P. Pedersen, and D. M. Elliott, Quantification of interfibrillar shear stress in aligned soft collagenous tissues via notch tension testing, Sci. Rep., vol. 5, no. 1, pp. 1–9, 2015.
  • W. Shu, and I. Stanciulescu, Shear-lag analysis of capped carbon nanotube reinforced composites with interface damage, Compos. Struct., vol. 242, pp. 112107, 2020. DOI: 10.1016/j.compstruct.2020.112107.
  • A. D. Freed, and T. C. Doehring, Elastic model for crimped collagen fibrils, J. Biomech. Eng., vol. 127, no. 4, pp. 587–593, 2005. DOI: 10.1115/1.1934145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.